## **Physics 103 Final Exam**

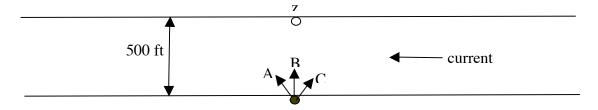
| NameID#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Section #TA Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Fill in your name, student ID# (not your social security #) and section # (under ABC of special codes) on the Scantron sheet. Fill in the letters given for the first 5 questions on the Scantron sheet. These letters determine which version of the test you took, and it is <i>very</i> important to get this right. Make sure your exam has questions 6 to 40.                                                                                                                                                                                                                       |  |  |
| 1. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 2. D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 3. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 4. E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 5. B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| USEFUL NUMBERS: Gas constant 8.31 J/K-mole $1 \text{ atm} = 10^5 \text{ Pa}$ $N_A = 6.03 \times 10^{23} \text{ molecules/mole}$ $g = 9.8 \text{ m/s}^2$ $\Box = 5.67 \times 10^{-8} \text{ W/m}^2\text{-K}^4$                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| atomic weight of nitrogen $N = 14$<br>atomic weight of oxygen $O = 16$<br>atomic weight of Hydrogen $= 1$<br>atomic weight of helium $= 4$<br>mass density of water $1000 \text{ kg/m}^3$<br>mass density of ice $917 \text{ kg/m}^3$<br>mass density of aluminum $2700 \text{ kg/m}^3$<br>mass density of sea water $1035 \text{ kg/m}^3$                                                                                                                                                                                                                                               |  |  |
| mass density of iron 7860 kg/m <sup>3</sup> specific heat of water 4183 J/kg-C specific heat of copper 387 J/kg-C specific heat of ice 2090 J/kg-C specific heat of iron 448 J/kg-C linear thermal expansivity of copper = $17 \times 10^{-6}  ^{\circ}\text{C}^{-1}$ linear thermal expansivity of aluminum = $24 \times 10^{-6}  ^{\circ}\text{C}^{-1}$ linear thermal expansivity of steel = $11 \times 10^{-6}  ^{\circ}\text{C}^{-1}$ latent heat of fusion of water is $3.33 \times 10^{5}  \text{J/kg}$ latent heat of vaporization of water is $2.26 \times 10^{6}  \text{J/kg}$ |  |  |

| Name                                                                                                                                                                                                            |                                                                             |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                 |                                                                             |  |
| 9) Indicatinvolved;                                                                                                                                                                                             | te which of the following processes of heat transfer requires a fluid to be |  |
| (a)                                                                                                                                                                                                             | Change of phase                                                             |  |
| (b)                                                                                                                                                                                                             | Convection                                                                  |  |
| (c)                                                                                                                                                                                                             | Radiation                                                                   |  |
| (d)                                                                                                                                                                                                             | Conduction                                                                  |  |
| (e)                                                                                                                                                                                                             | None of the above choices is valid                                          |  |
| 10) A 100 m long high voltage cable is suspended between two towers. The mass of the 100 m cable is 150 kg. If the tension in the cable is 30,000 N, the lowest frequency at which this cable can oscillate is: |                                                                             |  |
| (a)                                                                                                                                                                                                             | 2.0 Hz                                                                      |  |
| (b)                                                                                                                                                                                                             | 1.0 Hz                                                                      |  |
| (c)                                                                                                                                                                                                             | 1.4 Hz                                                                      |  |
| (d)                                                                                                                                                                                                             | 0.71 Hz                                                                     |  |
| (e)                                                                                                                                                                                                             | 0.50 Hz                                                                     |  |
| 11) If two adjacent frequencies of an organ pipe closed at one end are 550 Hz and 650 Hz, the length of the pipe is: (velocity of sound is 340 m/s)                                                             |                                                                             |  |
| (a)                                                                                                                                                                                                             | 0.85 m                                                                      |  |
| (b)                                                                                                                                                                                                             | 1.25 m                                                                      |  |
| (c)                                                                                                                                                                                                             | 1.50 m                                                                      |  |
| (d)                                                                                                                                                                                                             | 1.70 m                                                                      |  |
| (e)                                                                                                                                                                                                             | 3.40 m                                                                      |  |
|                                                                                                                                                                                                                 |                                                                             |  |

| Name                                                                                                                                                                                                                           |                                                                                                                                                                                                                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 15) Water (an ideal fluid) flows at 10 m/s through a pipe of radius 3 cm. The pipe goes up to the second floor of the building (2 m higher) and the pressure remains unchanged. The radius of the pipe on the second floor is: |                                                                                                                                                                                                                   |  |
| (a) r                                                                                                                                                                                                                          | radius = 4.6 cm                                                                                                                                                                                                   |  |
| (b) r                                                                                                                                                                                                                          | radius = 3.4 cm                                                                                                                                                                                                   |  |
| (c) r                                                                                                                                                                                                                          | radius = 1.2 cm                                                                                                                                                                                                   |  |
| (d) c                                                                                                                                                                                                                          | cannot be determined from the information given                                                                                                                                                                   |  |
| (e) r                                                                                                                                                                                                                          | radius = 2.6 cm                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                | k of wood is floating partially submerged in large pail of water. It is placed on an elevator. As the elevator accelerates upward, the block of wood                                                              |  |
| (a) s                                                                                                                                                                                                                          | sinks                                                                                                                                                                                                             |  |
| (b) r                                                                                                                                                                                                                          | rises                                                                                                                                                                                                             |  |
| (c) r                                                                                                                                                                                                                          | remains submerged at the same level                                                                                                                                                                               |  |
| (d) r                                                                                                                                                                                                                          | none of the above                                                                                                                                                                                                 |  |
| (e) c                                                                                                                                                                                                                          | cannot be predicted                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                |                                                                                                                                                                                                                   |  |
| on your righ                                                                                                                                                                                                                   | you stand half way between two loudspeakers, with one on your left and one nt, a musical note from the speakers gives you constructive interference. How left should you move to obtain destructive interference? |  |
| (a) c                                                                                                                                                                                                                          | one and a half wavelengths                                                                                                                                                                                        |  |
| (b) l                                                                                                                                                                                                                          | half a wavelength                                                                                                                                                                                                 |  |
| (c) a                                                                                                                                                                                                                          | a quarter of a wavelength                                                                                                                                                                                         |  |
| (d) o                                                                                                                                                                                                                          | one wave length                                                                                                                                                                                                   |  |
| (e) r                                                                                                                                                                                                                          | not move at all                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                |                                                                                                                                                                                                                   |  |

| Name |  |
|------|--|
|      |  |

- 18) A violinist tunes his instrument using a 440 Hz tuning fork. At one moment he perceives a beat frequency of 7 Hz. The frequency of vibration of his string is:
  - (a) exactly 447 Hz
  - (b) exactly 433 Hz
  - (c) either 433 Hz or 447 Hz
  - (d) exactly 880 Hz
  - (e) both 433 Hz and 447 Hz
- 19) You are a passenger on a hot air balloon that is rising with constant velocity and you are carrying a cell phone that rings with a sound of frequency f. As you open it, you drop it and it falls to earth still ringing. As it is falling you note that the ringing:
  - (a) increases in frequency and intensity.
  - (b) decreases in frequency and intensity.
  - (c) decreases in frequency and the intensity increases.
  - (d) increases in frequency and the intensity decreases.
  - (e) maintains its frequency and intensity unchanged.
- 20) Sunlight falls on the Earth delivering energy E to the earth every day. The Earth is at a temperature of 18 °C while the Sun has surface temperature 5000 °C. The Earth radiates an energy W away to outer space each day. Indicate which of the following statements is true:
  - a.) W = E and the entropy received from the Sun is > the entropy exported from the Earth.
  - b.) W < E and the entropy received from the Sun is < the entropy exported from the Earth.
  - c.) W = E and the entropy received from the Sun is < the entropy exported from the Earth.
  - d.) W > E and the entropy received from the Sun is = the entropy exported from the Earth.
  - e.) W < E and the entropy received from the Sun is > the entropy exported from the Earth.


| Name                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 27) A "grandfather's" clock is based on a pendulum of length exactly 1 m at temperature -20 $^{\circ}$ C. If the clock is taken to a location at -30 $^{\circ}$ C the clock                                                                                                                                                      |
| a.) is unchanged                                                                                                                                                                                                                                                                                                                 |
| b.) gains a little bit each day                                                                                                                                                                                                                                                                                                  |
| c.) loses a little bit each day                                                                                                                                                                                                                                                                                                  |
| d.) becomes inoperative                                                                                                                                                                                                                                                                                                          |
| e.) stops.                                                                                                                                                                                                                                                                                                                       |
| 28) A phonograph record of moment of inertia $I_0$ is initially at rest and falls on the rotating turntable (moment of inertia $I_1$ ) which is rotating with angular velocity $\square_1$ . Because the surfaces are rough the two eventually reach the same angular speed $\square$ . The ratio of $\square_1$ to $\square$ is |
| a.) $I_1/I_0$                                                                                                                                                                                                                                                                                                                    |
| b.) $I_0/I_1$                                                                                                                                                                                                                                                                                                                    |
| c.) $(I_0+I_1)/I_1$                                                                                                                                                                                                                                                                                                              |
| d.) $(I_0 + I_1)/I_0$                                                                                                                                                                                                                                                                                                            |
| e.) $I_0/(I_0+I_1)$                                                                                                                                                                                                                                                                                                              |
| 29) Which of the following is not an example of convective heat transfer:                                                                                                                                                                                                                                                        |
| a.) Boiling water in a pan                                                                                                                                                                                                                                                                                                       |
| b.) A sailplane circling in the sky                                                                                                                                                                                                                                                                                              |
| c.) A southerly wind                                                                                                                                                                                                                                                                                                             |
| d.) A sunburn                                                                                                                                                                                                                                                                                                                    |
| e.) A "drafty" room                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                  |

| Name                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30) If the amplitude of a system moving in simple harmonic motion is reduced by half, which statement is false:                                                                                                                                                                      |
| a.) The total energy is halved                                                                                                                                                                                                                                                       |
| b.) The period is unchanged.                                                                                                                                                                                                                                                         |
| c.) The frequency is unchanged                                                                                                                                                                                                                                                       |
| d.) The maximum speed is halved                                                                                                                                                                                                                                                      |
| e.) The maximum acceleration is halved                                                                                                                                                                                                                                               |
| 31) Three balls are thrown with exactly the same speed from the top of a building of height H. Ball A is thrown upwards at 30° to horizontal, ball B is thrown horizontally, and ball C is thrown down at 30° to the horizontal. Neglecting air resistance, which statement is true. |
| a.) All the balls strike the ground with the same speed.                                                                                                                                                                                                                             |
| b.) Ball C strikes the ground with the highest speed, then B, then A.                                                                                                                                                                                                                |
| c.) Ball C strikes the ground with the highest speed, then A, then B.                                                                                                                                                                                                                |
| d.) Ball A strikes the ground with the highest speed then B, then C                                                                                                                                                                                                                  |
| e.) Ball A strikes the ground with the highest speed then C, then B                                                                                                                                                                                                                  |
| 32) Two cars, one in front of the other, are traveling down the highway at 25 m/s. The car behind sounds its horn, which has a frequency of 500 Hz. The frequency of the sound heard by the driver of the lead car is:                                                               |
| a.) 463 Hz                                                                                                                                                                                                                                                                           |
| b.) 540 Hz                                                                                                                                                                                                                                                                           |
| c.) 579 Hz                                                                                                                                                                                                                                                                           |
| d.) 500 Hz                                                                                                                                                                                                                                                                           |
| e.) 427 Hz                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                      |

| Name .  |                                                                                                                                                                                                                                                    |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| fire ho | 3) A fireperson is 50 m from a burning building and directs a stream of water from a re hose at an angle of 30° above the horizontal. If the initial speed of the stream is 40 /s the height that the stream of water will strike the building is: |  |  |  |
| (a)     | 9.6 m                                                                                                                                                                                                                                              |  |  |  |
| (b)     | 13.4 m                                                                                                                                                                                                                                             |  |  |  |
| (c)     | 18.7 m                                                                                                                                                                                                                                             |  |  |  |
| (d)     | 22.4 m                                                                                                                                                                                                                                             |  |  |  |
| (e)     | 30.0 m                                                                                                                                                                                                                                             |  |  |  |
|         | You are lifting a book to a shelf of a bookcase. You can take the book to the shelf ious paths. Which one of the following statements is true:                                                                                                     |  |  |  |
| (a)     | Work done on the book depends on the path taken by book.                                                                                                                                                                                           |  |  |  |
| (b)     | Work done on the book depends on the time taken to move it.                                                                                                                                                                                        |  |  |  |
| (c)     | The power required depends on the mass of the book and the height of the book shelf only.                                                                                                                                                          |  |  |  |
| (d)     | The power required varies depending on the path taken, if you move the book at constant speed along various paths.                                                                                                                                 |  |  |  |
| (e)     | No work is done on the book at all.                                                                                                                                                                                                                |  |  |  |
|         | heavily loaded boat is floating in a small shallow pond. The boat springs a leak and The surface level of the pond:                                                                                                                                |  |  |  |
| a)      | stays the same                                                                                                                                                                                                                                     |  |  |  |
| b)      | goes higher                                                                                                                                                                                                                                        |  |  |  |
| c)      | goes lower                                                                                                                                                                                                                                         |  |  |  |
| d)      | more information is needed to reach a conclusion.                                                                                                                                                                                                  |  |  |  |
| e)      | depends on the depth of the pond                                                                                                                                                                                                                   |  |  |  |
|         |                                                                                                                                                                                                                                                    |  |  |  |

| Name                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| The following three questions pertain to the situation described below:                                                                                                                                                                                                                                                                            |  |  |  |
| Three carts are on a frictionless air track as shown. One (A) of mass 1500 g. is at rest and a similar one (B) also of mass 1500 g is moving toward it at 2 m/s. They make a completely inelastic collision and then they (as a unit) collide inelastically with a third cart (C) of mass 500 g. which is moving toward the pair with speed 6 m/s. |  |  |  |
| B 2 m/s A 6 m/s C                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 36) The velocity of the pair A-B after their collision is:                                                                                                                                                                                                                                                                                         |  |  |  |
| a.) 2.0 m/s                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| b.) 1.5 m/s                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| c.) 1.0 m/s                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| d.) 0.5 m/s                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| e.) 0.0 m/s                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 37) The velocity of the group A-B-C after the collision is:                                                                                                                                                                                                                                                                                        |  |  |  |
| a.) 2.0 m/s                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| b.) 1.5 m/s                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| c.) 1.0 m/s                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| d.) 0.5 m/s                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| e.) 0.0 m/s                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 38) The amount of the initial kinetic energy (A and B and C) lost to heat in the two collisions is:                                                                                                                                                                                                                                                |  |  |  |
| a.) 1.5 J                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| b.) 12.0 J                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| c.) 3.0 J                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| d.) 6.0 J                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| e.) 24.0 J                                                                                                                                                                                                                                                                                                                                         |  |  |  |

Three swimmers Alma, Betty and Carol, *all* of whom swim at the same velocity through the water (3 mph) set out for the other side of a river which is 500 ft across and has a current of 1 mph as shown.



- 39) Which of the swimmers will reach the other side farthest from the point z directly opposite the starting point?
  - a.) Alma
  - b.) Betty
  - c.) Carol
  - d.) All will fail to get to the other side
  - e.) All will reach the other side simultaneously.
- 40) Which of the swimmers will reach the other side in the shortest time, irrespective of their final location.
  - a.) Alma
  - b.) Betty
  - c.) Carol
  - d.) All will fail to get to the other side
  - e.) All will reach the other side simultaneously.