Name			ID#		—
Section #	TA Name _				
Fill in the	information on the s	scantron sheet.	Use your s	tudent ID	#
and not your	social security #.	Fill the letter	s given fo	or the firs	t 5
questions or	the scantron sheet.	. These letters	determine	which vers	ion

- 1. A
- 2. D
- 3. C
- 4. E
- 5. B
- 6. In an elastic solid there is a direct proportionality between strain and:

of the test you took and are IMPORTANT to get right.

- a. elastic modulus
- b. cross-sectional area
- c. temperature
- d. density
- e. stress
- 7. The quantity "strain" expressed in terms of the fundamental quantities (mass, length, time) is equivalent to:
 - a. MLT^{-1}
 - b. $ML^{-1}T^{-2}$
 - c. $M^2L^{-1}T^{-3}$
 - d. a dimensionless quantity
 - e. L³
- 8. By what factor is the total pressure greater at a depth of 850 m of water than at the surface where the pressure is one atmosphere?
 - a. 100
 - b. 74
 - c. 84
 - d. 190
 - e. 19

- 9. A fountain sends water to a height of 100 meters. What must be the pressure (above atmospheric) of the underground water system?
 - a. 1 ATM
 - b. 7.2 ATM
 - c. 4.2 ATM
 - d. 10.7 ATM
 - e. 9.7 ATM
- 10. Which best expresses the value for the coefficient of volume expansion, β for given material as a function of its corresponding coefficient of linear expansion, $\alpha?$
 - a. $\beta = \alpha^3$
 - b. $\beta = 3\alpha$
 - c. $\beta = 2\alpha$
 - d. $\beta = \alpha$
 - e. $\beta = \alpha^2$
- 11. If the temperature of an ideal gas contained in a box is increased:
 - a. the average velocity of the molecules in the box will be increased.
 - b. the distance between molecules in the box will be increased.
 - c. the average speed of the molecules in the box will be increased.
 - d. the average time between collisions will be increased.
 - e. the number of molecules in the box will be increased.
- 12. A 10 g piece of aluminum (which has a specific heat of 0.215 cal/gm- $^{\circ}$ C) is warmed so that its temperature increases by 5 $^{\circ}$ C. How much heat was transferred into it?
 - a. 11 cal
 - b. 34 cal
 - c. 22 cal
 - d. 54 cal
 - e. 48 cal
- 13. Heat flow occurs between two bodies in thermal contact when they differ in what property?
 - a. mass
 - b. density
 - c. specific heat
 - d. heat capacity
 - e. temperature

- 14. Which one of the following processes occur only in a fluid?
 - a. evaporation
 - b. conduction
 - c. radiation
 - d. convection
 - e. compression
- 15. A window pane is half a centimeter thick and has an area of 1 m². The temperature difference between the inside and outside surfaces of the pane is 15°C. What is the rate of heat flow through this window? (Thermal conductivity for glass is 0.8 J/s-m-°C.)
 - a. 4,800 J/s
 - b. 48,000 J/s
 - c. 2,400 J/s
 - d. 1,000 J/s
 - e. 500 J/s
- 16. A swimming pool heater has to be able to raise the temperature of the 40,000 gallons of water in the pool by 10°C. How many kiloWatthours of energy are required? (One gallon of water has a mass of approximately 3.8 kg and the specific heat of water is 4186 J/kg-°C.)
 - a. 180 kWh
 - b. 1955 kWh
 - c. 1770 kWh
 - d. 330 kWh
 - e. 216 kWh
- 17. Iced tea is made by adding ice to 1.8 kg of hot tea, initially at 80° C. How many kg of ice, initially at 0° C, are required to bring the mixture to 10° C? ($L_{\rm f}$ = 80 kcal/kg)
 - a. 1.5 kg
 - b. 1.8 kg
 - c. 1.6 kg
 - d. 1.4 kg
 - e. 1.2 kg

- 18. A 5 gram lead bullet traveling in 20°C air at 300 m/s strikes a flat steel plate and stops. What is the final temperature of the lead bullet? (Assume all heat is retained by the bullet). The melting point of lead is 327°C. The specific heat of lead is 0.122 J/g/°C and the heat of fusion of lead is 24.7 J/g.
 - a. 300°C
 - b. 227°C
 - c. 260°C
 - d. 293°C
 - e. 327°C
- 19. The tungsten filament of a lightbulb has an operating temperature of about 1800°C. If the emitting area of the filament is 1 cm², and its emissivity is 0.68, what is the power output of the lightbulb? ($\sigma = 5.67 \times 10^{-8} \text{ W/m}^2\text{K}^4$)
 - a. 150 W
 - b. 100 W
 - c. 70 W
 - d. 60 W
 - e. 40 W
- 20. In an isothermal process for an ideal gas system (where the internal energy doesn't change), which of the following choices best corresponds to the value of the work done by the system?
 - a. half the heat intake
 - b. its heat intake
 - c. twice its heat intake
 - d. the negative of its heat intake
 - e. twice the negative of its heat intake
- 21. A heat engine exhausts 3000 J of heat while performing 1500 J of of useful work. What is the efficiency of the engine?
 - a. 67%
 - b. 15%
 - c. 33%
 - d. 50%
 - e. 60%

- 22. A 5 mole ideal gas system undergoes an adiabatic expansion, while cooling from 80°C to 50°C . How much work is done by the system during this expansion? (R = 8.31 J/mol-K)
 - a. +41 J
 - b. -1250 J
 - c. -41 J
 - d. zero
 - e. +1250 J
- 23. One kilogram of water at the 1 ATM boiling point (100°C) is heated until all the water vaporizes. What is its change in entropy? (For water, $L_{\rm vap}$ = 2.26 × 106 J/kg)
 - a. 2260 J/K
 - b. 12118 J/K
 - c. 6059 J/K
 - d. 3030 J/K
 - e. 1223 J/K
- 24. When gasoline is burned, it gives off 46,000 J/gram of heat energy. If an automobile uses 13.0 kg of gasoline per hour with an efficiency of 21%, what is the average horsepower output of the engine? (1 HP = 746 W)
 - a. 223 HP
 - b. 46.76 HP
 - c. 108.7 HP
 - d. 67.2 HP
 - e. 33.6 HP
- 25. A bottle with a fixed volume of 2 m³ contains an ideal gas at a pressure of 1 ATM at a temperature of 300°C. The bottle is placed against a metal block that is maintained at 900°C, and the gas comes to thermal equilibrium with the block. What is the pressure of the gas after equilibrium is reached?
 - a. 5 ATM
 - b. 1 ATM
 - c. 2 ATM
 - d. 3 ATM
 - e. 4 ATM