#### Physics 103 October 5, 2000 Exam 1 --- EXAM AAAAA

6. Using the dimensions for the variables given in the table,

| ariable | Dimension<br>1             |  |  |  |
|---------|----------------------------|--|--|--|
| f       | $\overline{[	ilde{	t T}]}$ |  |  |  |
| 1       | [L]                        |  |  |  |
|         | $\frac{[L]}{[T]^2}$        |  |  |  |
| g       |                            |  |  |  |

determine which one of the following expressions is correct.

A) 
$$f = 2\pi lg$$

B) 
$$2\pi f = \sqrt{\frac{g}{l}}$$

$$f = \frac{g}{2\pi i}$$

$$D) 2\pi f = \sqrt{\frac{l}{g}}$$

$$(E) \quad f = 2\pi \sqrt{gl}$$

7. A 2.5-m ladder leans against a wall and makes an angle with the wall of 32° as shown in the figure. What is the height h above the floor where the ladder makes contact with the wall?



- A) 1.6 m
- B) 1.9 m
- C) 1.3 m
- D) 2.4 m
- E) 2.1 m
- 8. Three vectors A, B, and C add together to yield zero: A + B + C = 0. The vectors A and C point in *opposite* directions and their magnitudes are related by the expression: A = 2C. Which one of the following conclusions is correct?
- A) A and B have equal magnitudes and point in opposite directions.
- B) B and C have equal magnitudes and point in the same direction.
- C) B and C have equal magnitudes and point in opposite directions.
- D) A and B point in the same direction, but A has twice the magnitude of B.
- E) B and C point in the same direction, but C has twice the magnitude of B.
- 9. The x and y components of a displacement vector are -3.00 m and +4.00 m, respectively. What angle does this vector make with the positive x axis?
- A) 127°
- B) -53.0°
- C) 53.0°
- D) 233°
- E) 37.0°

10. Use the component method of vector addition to find the components of the resultant of the four displacements shown in the figure. The magnitudes of the displacements are: A = 2.25 cm, B = 6.35 cm, C = 5.47 cm, and D = 4.19 cm.



| x component | y component                   |
|-------------|-------------------------------|
| 6.93 cm     | -2.19 cm                      |
| 1.09 cm     | -3.71 cm                      |
| 5.45 cm     | -2.82 cm                      |
| 3.71 cm     | -1.09 cm                      |
| 2.19 cm     | −6.92 cm                      |
|             | 1.09 cm<br>5.45 cm<br>3.71 cm |

- 11. A car starts from rest and accelerates at a constant rate in a straight line. In the *first* second the car covers a distance of 2.0 meters. How fast will the car be moving at the end of the *second* second?
- A) 32 m/s
- B) 4.0 m/s
- C) 8.0 m/s
- D) 16 m/s
- E) 2.0 m/s
- 12. A race car has a speed of 80 m/s. At t = 0, the driver starts decelerating at -4 m/s<sup>2</sup>. How far will the car travel before it stops?
- A) 20 m
- B) 1000 m
- C) 400 m
- D) 200 m
- E) 800 m

## Use the following to answer question 13:

An object is moving along the x axis. The graph shows its <u>position</u> from the starting point as a function of <u>time</u>.



Various segments of the graph are identified by the letters A, B, C, and D.

- 13. During which interval(s) is the object moving in the negative x direction?
- A) during interval B only
- B) during intervals B and C
- C) during intervals C and D
- D) during intervals B and D
- E) during intervals B, C, and D

#### Use the following to answer question 14:

A tennis ball is shot vertically upward with an initial speed of 20.0 m/s from the surface of planet Krypton--a planet with no atmosphere. One second later, the ball has an instantaneous velocity in the upward direction of 15.0 m/s.

- 14. How long does it take the ball to reach its maximum height?
- A) 4.0 s
- B) 2.3 s
- C) 8.0 s
- D) 4.6 s
- E) 2.0 s

# Use the following to answer question 15:

A projectile is fired at an angle of 60.0° above the horizontal with an initial speed of 30.0 m/s.

- 15. How long does it take the projectile to reach the highest point in its trajectory?
- A) 1.5 s
- B) 4.0 s
- C) 2.7 s
- D) 9.8 s
- E) 6.2 s
- 16. A projectile is fired horizontally with an initial speed of 57 m/s. What are the horizontal and vertical components of its displacement 3.0 s after it is fired?

|    | mid totalent comit - | <del>-</del>    | <del>-</del> . |     |                    |             |
|----|----------------------|-----------------|----------------|-----|--------------------|-------------|
|    | <u>horizontal</u>    | <u>vertical</u> |                | y 1 | 1                  |             |
| A) | 210 m                | 44 m            |                |     |                    |             |
| B) | 170 m                | <b>-</b> 44 m   |                |     | → V <sub>0</sub> x | <del></del> |
| C) | 210 m                | 0 m             |                |     |                    |             |
| D) | 44 m                 | 29 m            |                |     |                    |             |
| E) | 170 m                | →29 m           |                |     |                    |             |
| رب |                      |                 |                |     |                    |             |

## Use the following to answer questions 17-18:

A rock is kicked horizontally at a speed of 5 m/s from the edge of a cliff. The rock strikes the ground 55 m from the foot of the cliff of height H as suggested in the figure. Neglect air resistance.



- 17. How long is the rock in the air?
- A) 11.0 s
- B) 22.0 s
- C) 1.2 s
- D) 3.4 s
- E) 1.0 s
- 18. What is the approximate value of H, the height of the cliff?
- A) 700 m
- B) 595 m
- C) 830 m
- D) 540 m
- E) 270 m

## Use the following to answer question 19:

A spaceship is observed traveling in the positive x direction with a speed of 150 m/s when it begins accelerating at a constant rate. The spaceship is observed 25 s later traveling with an instantaneous velocity of 1500 m/s at an angle of 55° above the +x axis.

- 19. What was the magnitude of the acceleration of the spaceship during the 25 seconds?
- A)  $57 \text{ m/s}^2$
- B)  $1.5 \text{ m/s}^2$
- C) 28 m/s<sup>2</sup>
- D)  $48 \text{ m/s}^2$
- E)  $7.3 \text{ m/s}^2$
- 20. The figure shows the <u>velocity</u> versus <u>time</u> curve for a car traveling along a straight line.



Which of the following statements is false?

- A) No net force acts on the car during interval B.
- B) Net forces act on the car during intervals A and C.
- C) Opposing forces may be acting on the car during interval B.
- D) Opposing forces may be acting on the car during interval C.
- E) The magnitude of the net force acting during interval A is less than that during C.

## Use the following to answer question 21:

In space, a 70.0-kg astronaut pushes to the left on a spacecraft with a force F.. (In orbit, both the astronaut and the spacecraft are weightless). The spacecraft has a total mass of  $1.0 \times 10^4$  kg.



During the push, the astronaut accelerates to the right with an acceleration of 0.36 m/s<sup>2</sup>.

- 21. Determine the magnitude of the acceleration of the spacecraft.
- A)  $3.97 \times 10^{-4} \text{ m/s}^2$
- B)  $51.4 \text{ m/s}^2$
- C)  $0.36 \text{ m/s}^2$
- D)  $7.0 \times 10^{-3} \text{ m/s}^2$
- E)  $2.5 \times 10^{-3} \text{ m/s}^2$

## Use the following to answer question 22:

A force P pulls on a crate of mass m on a rough surface. The figure shows the magnitudes and directions of the forces that act on the crate in this situation. W represents the weight of the crate.  $\mathbf{F}_{N}$  represents the normal force on the crate, and f represents the frictional force.



- 22. What is the magnitude of  $F_N$ , the normal force on the crate?
- A) 57 N
- B) 80 N
- C) 196 N
- D) 230 N
- E) 160 N
- 23. A boy pulls a sled of mass 5.0 kg with a rope that makes an 60.0° angle with respect to the horizontal surface of a frozen pond. The boy pulls on the rope with a force of 10.0 N; and the sled moves with constant velocity. What is the coefficient of friction between the sled and the ice?
- A) 0.10
- B) 0.18
- C) 1.0
- D) 0.12
- E) 0.20