
If Louis Pasteur was correct that chance favors the prepared mind, then it found the perfect candidate in

Edward Norton Lorenz, MIT mathematician and meteorologist and father of chaos theory, a science many now

believe rivals even relativity and the quantum in importance.

The moment came one winter day 1961 at MIT. Lorenz was run-

ning a climate model consisting of twelve differential equations repre-

senting climate parameters when he decided to reexamine one the

run’s sequences. From printout he took conditions from a mid-point in

the model run and reinitiated the calculations, making only one slight

change: The original inputs had six decimal-digits, and Lorenz, to save

time and space, rounded them to three for the second run. He quite

reasonably expected that his second run would precisely match hiss

first, but it didn’t. It was, in fact, almost precisely the same at the begin-

ning, but then the second run diverged radically, bearing no resem-

blance to its mathematical parent. Clear that something was wrong,

Lorenz first suspected a hardware problem, but there nothing amiss

with his Royal McBee computer’s vacuum tubes. Then Lorenz realized

the truth. The rounding of the initial inputs—a tiny change in initial val-

ues—had produced wildly divergent results.

Long-term weather forecasting was doomed, Lorenz realized,

because of the climate’s “sensitive dependence on initial conditions.” He described it as “The Butterfly Effect”—a

perfect choice of terms given the graphic the Lorenz strange attractor, with its fractal dimension, generates. The

implications of Lorenz’s discovery—the chaotic nature of climate—are staggering. Human tampering with with cli-

mate’s atmospheric gases, the melting its glaciers and ice caps and the resultant loss of albedo, the temperature of

the oceans, and changes to innumerable other factors can wreak havoc on our climate, engendering changes in

weather as yet unimagined. Lorenz armed us with the predictive capability to understand the potential impact of

global climate futures that we may inadvertently create—or consciously decide to prevent.

And what of the Lorenz strange attractor itself? Both Dr. Marcelo Viana—winner of the Ramanujan Prize and

Grand Croix of the Order of Scientific Merit awarded by the President of Brazil—and Fields Medal winner Dr. Jean-

Christophe Yoccoz have studied the Lorenz Strange Attractor in multiple dimensions. Research on the Lorenz

strange attractor continues on the most advanced edges of mathematical inquiry. 

In awarding Edward Norton Lorenz the 1991 Kyoto Prize—one of a plethora of honors and awards bestowed

upon him—the Inamori Foundation wrote: “He made his boldest scientific achievement in discovering ‘determinis-

tic chaos,’ a principle which has profoundly influenced a wide range of basic sciences and brought about one of the

most dramatic changes in mankind's view of nature since Sir Isaac Newton.”

On the following pages Dr. Timothy Palmer, Head of the Probability Forecast Division at the European Centre for

Medium-Range Weather Forecasts and Dr. Clint Sprott, an award-winning lecturer and author of Chaos and Time-Series

Analysis, pay tribute to Dr. Lorenz work—and explain its components, meaning, and implications.

Dr. Lorenz is a currently a professor emeritus at the Massachusetts Institute of Technology. n
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In these equations,  is the Prandtl number (which represets the ratio of fluid viscosity to its thermal
conductivity; !#represents the temperature difference between the top and the bottom of the sys-
tem; and "#is the ratio of width to height of the box used to enclose the system. [See “Strange Attrac-
tors” at http://www.pha.jhu.edu/~ldb/seminar/attractors.html]



In the early 1960’s Edward Lorenz, a young meteor-

ology professor at MIT, had what was surely one of the

first personal computers, although you would hardly rec-

ognize it as such. He was using it to understand why the

weather has such erratic fluctuations, despite the regular

diurnal and seasonal variations in sunshine. In particular, he

was using his computer to solve a simple set of equations

that model atmospheric convection, hoping to find solu-

tions that were not periodic. His success was accompa-

nied by an unexpected discovery—sensitive dependence

on initial conditions—which he dubbed the ‘butterfly effect,’ since such behavior in the atmos-

phere would make long-range weather prediction impossible. His toy equations produced the

Lorenz attractor, a geometrical object that serendipitously resembles the wings of a butterfly, and

thus became an emblem of the modern chaos era.

I could have been at the forefront of that movement since I was a physics student at MIT tak-

ing classes and doing research just a few hundred feet from where Lorenz was then working, but

it was another twenty-five years before I became aware of his work, and forty years later that I
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“Lorenz saw the possibility of more complicated attrac-
tors that were neither stable points nor periodic cycles, and
his great achievement was to show not only that such
attractors exist, but that they can arise from very simple
mathematical models. Hence the irregularity and unpre-
dictability of the weather is not necessarily a consequence
of the complexity of the governing equations but is an
inherent property of the system.”



had a chance to meet him. How could it have escaped my attention that such simple equations

can have such complicated solutions? Perhaps chaos is very rare, as suggested by the fact that

everyone was studying a handful of examples that were known in the 1980’s. 

I decided to automate the search for chaos  in systems of equations and began finding thou-

sands of new examples,  each producing an object that David Ruelle and Floris Takens called a

‘strange attractor,’  some from equations even simpler than those used by Lorenz,  and many with

great aesthetic appeal. Shown on the next page is a sample of the 62 such objects in the Appendix

of my chaos textbook. Hundreds more, along with a simple explanation of the math and science

behind them are contained in the coffee-table art and poetry book that I wrote with Robin

Chapman. 
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The Lorenz Fractal. Model: Clint Sprott



So what are these gracefully swirling strange attractors? To understand them, it is useful to

consider the kinds of attractors that were known prior to Lorenz’s discovery. The simplest attrac-

tor is a point (a single dot), and it represents a stable equilibrium. In a model of the weather, it

would mean that the temperature and other conditions in a particular location is the same day

after day forever, unless there was some external disturbance such as a volcano erupting, in which
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Halvorsen’s Cyclically Symmetric Attractor. Model: Clint Sprott



case the conditions would depart from the equilibrium but would eventually return to it. A two-

dimensional plot showing the temperature at two different locations would wiggle around but

would seem to be attracted to the

equilibrium point in the aftermath of

any such disturbance. 

Clearly the weather is not and

cannot be a point attractor. Instead,

the temperature should rise during

the day and fall at night as solar heat-

ing comes and goes. Thus one might

expect a plot of the temperature at

two locations a continent apart to

cycle daily around a closed loop, and

if this cycle is stable, it is called a

‘limit cycle,’ which is a one-dimen-

sional attractor. Considering also the

seasonal cycle and locations at differ-

ent latitudes, one might expect a

more complicated, perhaps two-

dimensional attractor but still con-

sisting of some number of regular

periods.

Lorenz saw the possibility of more complicated attractors that were neither stable points nor

periodic cycles, and his great achievement was to show not only that such attractors exist, but that

they can arise from very simple mathematical models. Hence the irregularity and unpredictability

of the weather is not necessarily a consequence of the complexity of the governing equations but

is an inherent property of the system, and many dynamical systems in diverse fields such as ecol-

ogy and economics may share this property.
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In a chaotic system, the trajectory moves around on the attractor as time goes on, but two

nearby points separate exponentially so that eventually they are very far apart. Although their

future is determined uniquely and precisely by the governing equations, very small differences

in the starting point can make large differences in the future conditions. Although tomorrow’s

weather depends on the conditions today, and the weather the day after tomorrow depends on

the conditions tomorrow, small errors in measuring the current weather eventually grow until

all hope of predictability is lost — the ‘butterfly effect.’ 

The Sprott Simplest Chaotic Flow, Discovered by Clint Sprott
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If the Lorenz attractor is neither a point, nor a line, nor a surface, what is it? It is a geometri-

cal object called a ‘fractal’  that has structure on all scales and a dimension that is not an integer.

For example, the Lorenz

attractor has a dimension

(by one method of calcula-

tion) of 2.06215. Such an

object is almost a surface

(dimension 2.0), but it can-

not be flattened out, and it

must live in a space of at

least three dimensions. In

fact, systems like the wea-

ther in which the variables

change continuously (as

opposed to abruptly), can

only be chaotic if they have

three or more variables.

The atmosphere is actually

an infinite-dimensional sys-

tem, consisting of several

variables such as the tem-

perature at infinitely many

spatial locations, and so it is

hardly surprising that it

would behave chaotically,

and its attractor certainly

has a much higher dimen-

sion than does the Lorenz

attractor.

In a chaotic system, the trajectory moves around on the attractor as time goes on, but two

nearby points separate exponentially so that eventually they are very far apart. Although their

future is determined uniquely and precisely by the governing equations, very small differences in

the starting point can make large differences in the future conditions. Although tomorrow’s

weather depends on the conditions today, and the weather the day after tomorrow depends on

the conditions tomorrow, small errors in measuring the current weather eventually grow until all

hope of predictability is lost — the ‘butterfly effect.’ 
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The Hadley Circulation Fractal. Model: Clint Sprott



If a butterfly flapping its wings can cause a tornado, we can hope that small modifications

to the environment might prevent catastrophic events like tornadoes, hurricanes, and perhaps

even global warming. Who would have thought that a single individual working with a primi-

tive computer could have precipitated such a radical paradigm shift? That will be the legacy

of Edward Lorenz.
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Thus Lorenz showed that long-range

weather prediction will always be impossible,

although we might be able to better characterize

the attractor and understand how it might

change as parameters in the equations change. In

particular, there can be abrupt changes in the

behavior at ‘bifurcation points,’ more popularly

called ‘tipping points.’ Furthermore, the very

behavior that makes prediction difficult makes

control possible. If a butterfly flapping its wings

can cause a tornado, we can hope that small

modifications to the environment might prevent

catastrophic events like tornadoes, hurricanes,

and perhaps even global warming. Who would

have thought that a single individual working with

a primitive computer could have precipitated

such a radical paradigm shift? That will be the

legacy of Edward Lorenz.
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Thomas’ Cyclically Symmetric Attractor. 

Model: Clint Sprott


