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2.1

Change the variable Xn to Xn =
(

Yn

A
+

1
2

)
. Substitution in (2.4) yields:

Yn+1

A
+

1
2

= A

(
Yn

A
+

1
2

)(
1− Yn

A
− 1

2

)
= A

(
1
4
− Y 2

n

A2

)
. Multiply both

sides by A to get : Yn+1 = B − Y 2
n with B =

A2

4
− A

2

2.2

Fixed point: X∗ = 1− 1/2.8 ' 0.643
The first ten iterations are:
x1 = 0.631 , x2 = 0.652 , x3 = 0.635 , x4 = 0.649 , x5 = 0.638 , x6 = 0.647
x7 = 0.640 , x8 = 0.645 , x9 = 0.641 , x10 = 0.644 which indicate an
oscillation about X∗

2.3

Let f(X) = AX(1 −X) and consider X0 = X∗ + ε0 , with ε0 very small
and positive. Then X1 = f(X0) = AX∗ −AX∗2 − 2AX∗ε0 + Aε0 −Aε2

0.
X∗satisfies X∗ = AX∗−AX∗2 which gives X1 = X∗−2AX∗ε0+Aε0−Aε2

0.
The −Aε2

0 term is smaller than the ε0 terms and may be neglected. Hence
X1 = X∗ + ε0A (1− 2X∗) = X∗ + ε0f

′(X∗). X1 may be written as X1 =
X∗ + ε1

thus giving ε1 = ε0f
′(X∗). After n iterations: εn = ε0 (f ′(X∗))n

Hence the fixed point is unstable when |f ′(X∗)| > 1. For f ′(X∗) > 1 all ε’s
are positive which means X → +∞ as n → +∞. This is not the case for
negative slopes since the ε’s can both be positive and negative depending
whether n is even or odd.

2.4

See text on page 17.

2.5

The second iterate map is given by g(X) = f(f(X)) with f(X) = AX(1−
X).Let p and q be the fixed points of the map (these two points are given
by eqn 2.7).
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g′(X)|X=p = f ′(f(X))f ′(X)|X=p = f ′(f(p))f ′(p) = f ′(q)f ′(p)
= A2(1− 2p)(1− 2q) = A2[1− 2(p + q) + 4pq]
From eqn 2.6 observe that p + q = [A(A + 1)]/A2 and pq = (A + 1)/A2

Hence g′(X)|X=p = A2[1− 2A(A + 1)/A2 + 4 (A + 1) /A2] = 4 + 2A−A2

Eqn 2.8 is found by setting g′(X) = −1.In general the 2-cycle is stable
when |g′(X)| < 1 ie when 3 < A < 1 +

√
6

2.6

?

2.7

The map f(X) = 4X(1−X) has pre-images XA,B =
1
2
(1±√1−X). Then

f ′(XA,B) = ∓4
√

1−X and P (XA,B) =
2

π
√

X
. Use these two equations

in eqn 2.12 to obtain P (X) as in eqn 2.11

2.8

?

2.9

The pre-images of Xn+1 = f(Xn) = A min(Xn, 1 − Xn) are XA = X/A
and XB = 1−X/A . Use these together with the fact that |f ′(XA,B)| = 1
in eqn 2.12 to obtain P (X) = 1/A.

2.10

Let f(X) = A (1− |2X − 1|α) . Then f ′(X) = −2αAsign(2X−1) |2X − 1|α−1.
Obviously f ′ (1/2) is discontinuous for α ≤ 1 (not defined for α < 1 and
having a jump discontinuity for α = 1). The second derivative is given by:
f ′′(X) = −2α (α− 1) A(sign(2X−1))2 |2X − 1|α−2 = −2α (α− 1)A |2X − 1|α−2.
f ′′(1/2) is not defined for α < 2 , but for α ≥ 2, f ′′ is continuous every-
where and therefore f is smooth (Note: sign(x) = 1 for x ≥ 0 and −1 for
x < 0).

2.11

From Exercise 2.10 the derivative at 0 is given by f ′(0) = 2αA |−1|α−1.
Since α < 1/2 and 0 < A < 1 we may conclude that |f ′(0)| < 1 and hence
that the point X=0 is stable. The existence of a stable point eliminates the
possibility of presence of chaos in the map.
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3.1

The solution to eqn 3.1 is of the form x1 = x0e
at, where x0 is the initial

condition. A nearby trajectory starting from x0 + ε with ε small is given
by x2 = (x0 + ε) eat. Their separation ∆x = x2 − x1 = εeat increases
exponentially at a rate a.

3.2

The solution x =
1

1 +
(

1
x0
− 1

)
e−at

has derivative
dx

dt
=

a

(
1
x0
− 1

)
e−at

[
1 +

(
1
x0
− 1

)
e−at

]2 .

Use x and its derivative in the expression
dx

dt
− ax (1− x). Verifying that

this expression equals 0 proves that eqn 3.3 satisfies eqn 3.2.

3.3

This equation is a separable 1st order ODE. It can be written in the
form csc (x) dx = dt, but the solution can be given only in implicit form.
Integrating both sides and applying the initial condition x (0) = x0 we ob-
tain :
ln [(csc x− cot x) / (cscx0 − cot x0)] = t ⇔ csc x−cot x = (csc x0 − cot x0) et

3.4

dx/dt = ay and dy/dt = −bx . Differentiate the first equation with re-
spect to time and substitute dy/dt to get d2x/dt2 + abx = 0. This can
have a solution of the form x = x0 sin

(√
abt

)
. Substitution in the sec-

ond equation yields dy/dt = −bx0 sin
(√

abt
)

. Integrating once we get

y = x0

√
b
a cos

(√
abt

)
. The equations for x and y generate points that lie

on an ellipse with xmax
ymax

=
√

a
b .



xi

3.5

v (t) =
dx

dt
= v0 cosωt+

AΩ
ω2 − Ω2

cosΩt and
d2x

dt2
= −ωv0 sin ωt− AΩ2

ω2 − Ω2
sinΩt.

Using the expressions for x and d2x/dt2in the left hand side of ean 3.10 we
finally obtain A sinΩt which equals the right hand side.

3.6
d2x
dt2 = −v0

−ω4e−ω2 t
b +b4e−bt

b3 and dx
dt = v0

−ω2e−ω2 t
b +b2e−bt

b2 . Let ∆ = d2x
dt2 +

bdx
dt + ω2x = −v0ω

2−ω2e−ω2 t
b +b2e−bt

b3 .Then comparing ∆ with each term

from eqn 3.18 we get
∣∣∣∆/d2x

dt2

∣∣∣ = ω2e−ω2 t
b−b2e−bt

b2e−ω2 t
b−b2e−bt

¿ ω2e−ω2 t
b−b2e−bt

ω2e−ω2 t
b−b2e−bt

= 1 ,
∣∣∆/

(
bdx

dt

)∣∣ = ω2

b2 ¿ 1
4 and

∣∣∆/
(
ω2x

)∣∣ = −ω4e−ω2 t
b +b2ω2e−bt

−ω4e−ω2 t
b +b4e−bt

¿ −ω4e−ω2 t
b +b4e−bt

−ω4e−ω2 t
b +b4e−bt

=

1. Since each term is much less than 1 we may neglect ∆, thus verifying
that the eqn 3.21 satisfies eqn 3.18 .

3.7
x = v0te

−bt/2, v(t) = dx/dt = v0e
− 1

2 bt − 1
2v0tbe

− 1
2 bt and d2x/dt2 =

−v0be
− 1

2 bt + 1
4v0tb

2e−
1
2 bt . Substitute these in the right hand side of eqn

3.18 to verify that it equals zero.

3.8
x = (v0/ω) e−

1
2 bt sin ωt , v(t) = dx/dt = − 1

2v0e
− 1

2 bt b sin ωt−2(cos ωt)ω
ω and

d2x/dt2 = 1
4v0e

− 1
2 bt b2 sin ωt−4b(cos ωt)ω−4(sin ωt)ω2

ω . Substitution in eqn 3.18
yields
∆ = d2x/dt2 + bdx/dt + ω2x = − 1

4v0e
− 1

2 btb2 sin ωt
ω . Compare ∆ with each

term from eqn 3.18 to get :
∣∣∆/

(
ω2x

)∣∣ =
1
4v0e

− 1
2 btb2 sin ωt

ω

v0ωe−
1
2 bt sin ωt

= 1
4

b2

ω2 ¿ 1,
∣∣∣∣∣

∆
bdx

dt

∣∣∣∣∣ =
1
4v0e

− 1
2 btb2

∣∣ sin ωt
ω

∣∣
1
2v0be−

1
2 bt

∣∣∣ b sin ωt−2(cos ωt)ω
ω

∣∣∣
<

1
4b2

∣∣ sin ωt
ω

∣∣
b

= 1
4b

∣∣ sin ωt
ω

∣∣ ≤ 1
4

b

ω
¿

1 and
∣∣∣∆/d2x

dt2

∣∣∣ =
1
4v0e

− 1
2 btb2

∣∣ sin ωt
ω

∣∣
1
4v0e−

1
2 bt

∣∣∣ b2 sin ωt−4b(cos ωt)ω−4(sin ωt)ω2

ω

∣∣∣
<

b2
∣∣ sin ωt

ω

∣∣
|4ω sin ωt| =

1
4

b2

ω2 ¿ 1. Since ∆ is much smaller than each of the terms in eqn 3.18 we
may consider the eqn 3.23 roughly satisfying eqn 3.18.

3.9
x = A sin(Ωt−φ)√

(ω2−Ω2)2+b2Ω2
, v(t) = dx/dt = AΩ cos(Ωt−φ)√

(ω2−Ω2)2+b2Ω2
and d2x/dt2 = − AΩ2 sin(Ωt−φ)√

(ω2−Ω2)2+b2Ω2
.

Substitution in the right hand side of eqn 3.17 yields:
d2x

dt2
+ b

dx

dt
+ ω2x = A

(ω2−Ω2) sin(Ωt−φ)+bΩ cos(Ωt−φ)√
(ω2−Ω2)2+b2Ω2

(∗).
Use eqn 3.25 and the trigonometric identities cos φ = 1/

√
1 + tan2 φ =
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ω2−Ω2√
(ω2−Ω2)2+b2Ω2

and sin φ =
√

1− cos2 φ = bΩ√
(ω2−Ω2)2+b2Ω2

. Eqn (∗) can

then be written as:
d2x/dt2+bdx/dt+ω2x = A (cos φ sin (Ωt− φ) + sin φ cos (Ωt− φ)) = A sinΩt.

3.10

xm = A√
(ω2−Ω2)2+b2Ω2

and the derivative
dxm

dω
=

−AΩ(−2ω2+2Ω2+b2)(√
(ω4−2ω2Ω2+Ω4+b2Ω2)

)3 .

It becomes zero for Ω = 1
2

√
(4ω2 − 2b2) and Ω = − 1

2

√
(4ω2 − 2b2). xm be-

comes maximum for Ω = 1
2

√
(4ω2 − 2b2) and the maximum is 2A

b
√

(4ω2−b2)
.

3.11

Find the Ω’s for which
xm

A
= 1√

(ω2−Ω2)2+b2Ω2
=

1√
2bω

⇔
2b2ω2 =

(
ω2 − Ω2

)2 + b2Ω2. Then Ω4 +
(
b2 − 2ω2

)
Ω2 + ω4 − 2b2ω2 =

0 ⇔ (Ω/ω)4 +
(
(b/ω)2 − 2

)
(Ω/ω)2 + 1 − 2 (b/ω)2 = 0. The Ω’s satisfy

(
Ω1
ω

)2
+

(
Ω2
ω

)2
= 2− 1

Q2 and
(

Ω1
ω

)2 (
Ω2
ω

)2
= 1− 2

Q2 ⇒ Ω1
ω

Ω2
ω ' 1− 1

Q2 for

large Q. Hence
(

∆Ω
ω

)2
=

(
Ω1
ω

)2
+

(
Ω2
ω

)2− 2Ω1
ω

Ω2
ω ' 2− 1

Q2 − 2
(
1− 1

Q2

)
=

1
Q2 ⇒ ∆Ω

ω = 1
Q

3.12

Start with x2 + v2 = x2 +
(

dx
dt

)2 ' 4 and take the derivative at each side
to obtain 2xdx

dt +2dx
dt

d2x
dt2 ' 0 ⇔ x+ d2x

dt2 ' 0 which corresponds to eqn 3.26
in the limit as b → 0.

3.13

Use v=dx
dt to write eqn3.26 as x + dv

dt + bv
(
v2 + x2 − 1

)
= 0 ⇒

vx + v dv
dt + bv2

(
v2 + x2 − 1

)
= 0 ⇒ 1

2
d
dt

(
x2 + v2

)
+ bv2

(
v2 + x2 − 1

)
= 0

which is apparently satisfied by v2 + x2 = 1, the limit cycle.

3.14

?

3.15

SAME AS Prob 3.13

3.16

f = x− y− x3 and g = x− x2y . At (0, 0) we have dx/dt = dy/dt = 0 and
the Jacobian evaluated there is:
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J(0, 0) =
(

1 0
1 0

)

The eigenvalues can then be found to be λ = 0 and 1 from which we
may conclude that the origin is at an unstable equilibrium. For solutions
approximately on the unit circle ie satisfying x2 + y2 ' 1 we have dx/dt '
x

(
1− x2

)− y = xy2 − y. Multiply dx/dt by x and dy/dt by y to get:
x (dx/dt) ' x2y2 − xy and y (dy/dt) = yx − x2y2. Adding those together
we get x (dx/dt) + y (dy/dt) = 1

2
d
dt

(
x2 + y2

) ' 0 . Therefore the points
near the unit circle tend to remain close to it since the rate of change of
their distance from the origin is close to zero.

3.17

Write eqn 3.18 as a system of 1st order ODEs ie dy
dt = −by−ω2x = −y−x =

g(x, y) and dx
dt = y = f(x, y). The equations corresponding to 3.33 and 3.34

with h = 1 are xn+1 = xn + yn and yn+1 = −xn. These two can be written
in a single equation xn+1 = xn− xn−1 (∗). Starting with x0 = y1 = β and
x1 = α iterate (∗) to get x2 = α− β , x3 = −β , x4 = −α , x5 = −α + β ,
x6 = β = x0.

3.18

Total error: e(h, t, ε) = th + ε
√

t
h ⇒ ∂e

∂h = t − 1
2ε

√
t

h3 . For minimum set

∂e
∂h = 0 to get h = 3

√
ε2

4t . For this value of h , ∂2e
∂h2 > 0 which guarantees

that h = 3

√
ε2

4t gives the minimum.

3.19

The equations become xn+1 = xn+h
(

yn+1+yn

2

)
and yn+1 = yn+h

(
−xn+1+xn

2

)

which give x1 = x0+h
(

y1+y0
2

)
and y1 = y0−h

(
x1+x0

2

)
. Solving this system

we obtain y1 = −4h
4+h2 and x1 = 4−h2

4+h2 . These give y2
1 +x2

1 = (4−h2)2
+16h2

4+h2 = 1
, so the error is zero.

3.20
dy
dt = −by − ω2x = g(x, y) and dx

dt = y = f(x, y). Then :

xn+1 = xn+hf
(

xn+1+xn

2 , yn+1+yn

2

)
and yn+1 = yn+hg

(
xn+1+xn

2 , yn+1+yn

2

)

which give xn+1 = xn+hyn+1+yn

2 and yn+1 = yn+h
(
−byn+1+yn

2 − ω2 xn+1+xn

2

)
.

3.21

If we use the leapfrog method to the x variable once the same results are
obtained as in the text on page 46, namely x1 = 1 and y1 = −h which as
before gives an error of the order of h2 since ∆R = h2/2. However when we
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use the leapfrog method to the y variable we get x1 = 1− h2 and y1 = −h
which give
x2

1 + y2
1 = 1−h2 +h4 ' 1−h2. We also get an error of the order of h2, but

in this case ∆R = −h2/2.

3.22

Let Pn = (Xn, Yn) and P0 = (1, 0) . This problem is solved in two ways:
1. Using the leapfrog method in the x variable:
The equations become: Xn+1 = Xn + Yn and Yn+1 = Yn −Xn+1. Then
P1 = (1,−1) , P2 = (0,−1) , P3 = (−1, 0) , P4 = (−1, 1) , P5 = (0, 1) ,
P6 = P0 = (1, 0).
2. Using the leapfrog method in the y variable:
The equations are: Yn+1 = Yn −Xn and Xn+1 = Xn + Yn+1 and we get
P1 = (−1, 0) , P2 = (−1,−1) , P3 = (0,−1) , P4 = (1, 0) , P5 = (1, 1) ,
P6 = P0 = (1, 0) .
In either case we still get a solution of period 6 which is comparable to the
period 2π ' 6.28 of the exact solution.

3.23

?

3.24

?



4

4.1

4.2

Expand eqn 4.5 to get λ2−(a + d)λ+ad−bc = 0 and then use the quadratic
formula to obtain the two eigenvalues.

4.3

DONE IN TEXTBOOK ON PAGE 58

4.4

The Jacobian is given by: J =
(

0 1
−1 0

)
whose characteristic polynomial

is λ2 + 1 = 0 . Hence λ = ±i

4.5

The eigenvalues given by eqn 4.12 can be written as λ1,2 = − b
2

(
1±

√
1− (

2ω
b

)2
)

.

The term under the square root can never exceed 1, so the two eigenvalues
can either be complex conjugates or real with the same sign. Thus a saddle
point cannot occur since this requires λ1 and λ2 to be real with opposite
signs. For b > 2ω we get stable nodes (λ1 < λ2 < 0) if b is positive and
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unstable nodes if b is negative (λ1 > λ2 > 0) . When b = 2ω we either get
a degenerate stable node (for b > 0 ) or a degenerate unstable node (for
b < 0 ). When b < 2ω the term in the square root becomes negative thus
giving complex solutions. Under this condition we get an unstable focus for
b < 0 and a stable focus for b > 0.

4.6

If the arrows are in the direction towards the spiral and radial points, each
of these points are stable, otherwise they are unstable. Doing the same on
the saddle point has no effect on its overall stability.

4.7

In order to find the eigenvectors v one must solve the equation (J − λI) v =

0 ie
( −λ 1
−ω2 b− λ

)
v =

(
0
0

)
The solution is vi =

(
1
λi

)
, i = 1, 2.

For b = 2.5ω > 0, λ1 = −4b/5 and λ2 = −b/5 we obtain the figure shown
below which is similar to the middle plot of Fig 4.1.

4.8

The Jacobian J =
(

1 1
−2 4

)
gives the characteristic equation (1− λ) (4− λ)+

2 = 0 with eigenvalues λ1 = 3 and λ2 = 2 and eigenvectors v1 =
(

1
2

)

and v2 =
(

1
1

)
.

4.9

Add the two solutions given by 4.6 to obtain λ1 + λ2 = a + d =trace(J)
and multiply them to get λ1λ2 = ad− bc =det(J).
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4.10

The Jacobian of the damped harmonic oscillator has trace(J) = −b and
det(J) = ω2. For the critically damped case b = 2ω. Hence trace(J) =
±2

√
det (J).

4.11

Denote by τ the trace of J and by δ its determinant. The eigenvalues given
by eqn 4.6 may be written as λ1,2 = τ±√τ2−4δ

2 . The ultimate fate for each
romantic style can be determined by the values of τ and δ. Therefore we
can have the following cases:
CASE 1: τ > 0 and τ2 > 4δ > 0. In this case both λ1 and λ2 are positive
which means that the origin is an unstable node and therefore the couple
may end up extremely loving or hating each other or each of them having
opposite feelings for each other. What decides their final state is a matter
of the initial conditions.
CASE 2: τ > 0 and τ2 < 4δ. In such a case λ1 and λ2 are complex
conjugates with positive real part which means that the origin is an unstable
spiral. No matter what the initial conditions are the couple will never be
indifferent for each other. They will go through cycles of growing love and
growing hate forever (ie oscillatory feelings of growing intensity) , never
reaching some final feeling for his/her mate.
CASE 3. τ = 0 and δ > 0. The origin becomes a center. In this case the
couple will pass through never- ending periods of love and hate, but these
feelings are oscillatory with fixed maximum intensity and do not lead to
such an ”explosion” of feelings as in the cases 1 and 2. Moreover the couple
will never be indifferent for each other like in cases 1 and 2.
CASE 4: δ < 0 The origin is a saddle.Depending on the values of the
parameters a, b, c and d we can have two cases:
4a. The couple will either end up extremely loving each other or extremely
hating each other.
4b. The couple will have growing opposite feelings for each other (eg Romeo
extremely loving her and Juliet extremely hating him or vice versa).

Since the eigenvectors may be written as vi =
(

b
a−λi−1

)
with i = 1, 2, we

end up in case 4a if for the positive eigenvalue we have b
a−λ < 0 and in

case 4b if this expression is positive for the positive eigenvalue.
The outcomes of 4a and 4b are dependent upon the initial feelings for each
other. In both cases 4a and 4b there is a possibility of that Romeo and
Juliet become completely indifferent for each other. This may happen if
and only if initially the couple has feelings that lie on the eigendirection
whose eigenvalue is negative.
CASE 5: τ < 0. In this case the couple will end up being indifferent for one
another. The way this happens depends on whether we have τ2 > 4δ > 0 ,
where we get a stable node or τ2 < 4δ, where we get a stable spiral.
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4.12
IMPOSSIBLE TO MAKE SUCH PLOTS. The trace and determinant are
not sufficient to give the nature of the eigenvalues. For the 2× 2 case this
was possible since knowing the sum and product of the eigenvalues suffice
to fully determine the eigenvalues.

4.13
The equation λ3 +2.14λ2 +1 = 0 is solved using a computer and we obtain
λ1 = −2.33 and λ2,3 = 0.0925± 0.649i which verifies that the origin is a
spiral saddle of index 2.

4.14
The equilibria can be found by solving dx/dt = dy/dt = dz/dt = 0 using
eqns 4.33-4.35. It can be shown that the solutions are p∗1 = (0, 0, 0) and
p∗2,3 = (±

√
b(r − 1),±

√
b(r − 1), r − 1). Obviously the first bifurcation

occurs when r = 1 at which the equilibria p∗2 and p∗3 are created. The
Jacobian is

J(x, y, z) =




−σ σ 0
r − z −1 −x

y x −b


 which gives the characteristic equations

(b + λ)(λ2 + (σ + 1)λ + σ(r − 1) = 0 for p∗1 and λ3 + (σ + b + 1)λ2 +
b(σ + r)λ + 2bσ(r − 1) = 0 for p∗2,3. For 1 < r < r∗ the equilibria are
spiral nodes and for r > r∗ they become unstable spiral saddle points
with index 2 (see text on page 69). Since this happens, at the point where
r = r∗ the two of the three eigenvalues should be complex conjugates
with no real part. Assuming solutions of the form λ = iω substitute in
the characteristic equation for p∗2,3. The real and imaginary parts of the
left hand side should both equal to zero which give ω2 = b (σ + r∗) and
ω2 (σ + b + 1) = 2bσ (r∗ − 1) respectively. Substituting ω2 in the second

equation and solving for r∗ we obtain r∗ =
σ(b + σ + 3)

σ − b− 1

4.15
Solving the system of equations dx/dt = dy/dt = dz/dt = 0 we obtain two
equilibria, namely p∗1,2 = (∓1,±1, 0) . The Jacobian is given by

J(x, y, z) =



−1 −1 0
−z 0 −x
y x 0


. Hence J(p∗1,2) =



−1 −1 0
0 0 ±1
±1 ∓1 0


. For

both p∗1 and p∗2 the Jacobian has the same characteristic polynomial λ3 +
λ + λ2 + 2 = 0. Solving this equation using a computer we get λ1 = −1.35
and λ2,3 = 0.177± 1.20i.

4.16
Use eqns 4.36-4.38 to solve dx/dt = dy/dt = dz/dt = 0. These give x∗ =
az∗ , y∗ = −z∗ and z∗ = c±√c2−4ab

2a . The Jacobian is given by J(x, y, z) =
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


0 −1 −1
1 a 0
z 0 x− c


, whose characteristic equation is:

λ3 − λ2
(

b
z∗ + a

)
+ λ

(
z∗ + ba

z∗ + 1
)− az − b

z∗ = 0.
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5.1

Working as in section 5.1.1 on page 81 the result is λ =ln 10

5.2

Since we have |f ′(xn)| = A > 0 we get λ = ln |A| which is negative for
0 < A < 1 so there exists a stable fixed point for 0 < A < 1. For A > 1 we
always have |f ′(x∗)| > 0 at x = x∗ so it is impossible to have stable orbits.

5.3

NOT SURE ABOUT REASONING. After many iterations the map settles
to either a fixed point or a cycle. At bifurcation points, all points which are
fixed or belong to a cycle have their derivatives equal to 1 and hence the
logarithm of their derivatives equal to zero. Since the Lyapunov exponent
equals to the average of those logarithms after many iterations (see eqn
5.3), we may conclude that the Lypunov exponent equals to zero.

5.4

Since there is only one fixed point X∗ = 1−1/A the probability distribution
may take the form P (X) = δ(X−X∗) , where δ is the Dirac delta function.
So using λ =

∫ 1

0
P (X) ln |A(1− 2X)| dX we obtain λ = ln |A(1− 2X∗)| =

ln |2−A| .

5.5

Start from g(X) = f(f(X)) = A2X − A2
(
A2 + 1

)
X2 + 2A3X3 − A3X4

which gives g′(X) = A2 − 2A2
(
A2 + 1

)
X + 6A3X2 − 4A3X3 . Then the

probability distribution is given by P (X) = 1
2

[
δ(X −X∗

+) + δ(X −X∗
−)

]

with X∗
± being given in eqn 2.7. Use λ =

∫ 1

0
P (X) ln |g′(X∗)| dX to obtain

λ = 1
2 ln

∣∣g′(X∗
+)g′(X∗

−)
∣∣ . A lot of algebra would be required to evalu-

ate this expression, but there is an easier way for doing so if we consider
g′(X∗

±) = f ′(f(X∗
±))f ′(X∗

±) = f ′(X∗
∓)f ′(X∗

±) = A2(1− 2X∗
∓)(1− 2X∗

±) =
A2[1− 2(X∗

∓ + X∗
±) + 4X∗

∓X∗
±] . From equation (2.6) X∗

+ + X∗
− = [A(A +

1)]/A2 and X∗
−X∗

+ = (A + 1)/A2. Hence g′(X∗
±) = A2[1− 2A(A + 1)/A2 +

4 (A + 1) /A2] = 4 + 2A−A2 and therefore λ = ln
∣∣4 + 2A−A2

∣∣.
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5.6

The fixed point for A = 2 is X∗ = 1−1/2 = 1/2 . Moreover since f (X∗) = 0
we may conclude that there exists a supercycle since these results would
force the Lyapunov exponent to tend to −∞ . Iterating the map starting
from X0 = 0.1 we get X1 = 0.2952 , X2 = 0.41611392 , X3 = 0.4859262512
, X4 = 0.4996038592 , X5 = 0.4999996862 and X6 = 0.5000000000 .

5.7

Substitution of A = 1+
√

5 in eqn 2.7 we get X∗
+ = 3+

√
5

2(1+
√

5)and X∗
− = 1

2 . In

order to verify that we have supercycle we have to show that g′
(
X∗
−

)
= 0

with g′ being given in the solution of Problem 5.5. With a bit of algebra
one can verify that g′

(
X∗
±

)
= 0.

5.8

???????

5.9

Since the map for those range of values of α has a single fixed point the
Lyapunov exponent equals to λ = ln |f ′ (X∗)| . Since X∗ = 0 (the fixed
point) we may write λ = ln |f ′ (0)| = ln (2α) .

5.10

∆R2
n+1

∆R2
n

=
(a∆Xn + b∆Yn)2 + (c∆Xn + d∆Yn)2

∆X2
n + ∆Y 2

n

=

(
a + bY

′
n

)2

+
(
c + dY

′
n

)2

1 + Y ′2
n

with Y
′
n =

∆Yn

∆Xn
=

c∆Xn−1 + d∆Yn−1

a∆Xn−1 + b∆Yn−1
=

c + dY
′
n−1

a + bY
′
n−1

which is the same

as eqn 5.12. Substitution of ∆R2
n+1

∆R2
n

in eqn 5.10 yields eqn 5.11.

5.11

Using the notation of the text we get |a| = A , b = c = 0 and |d| =

B. Substitution in eqn 5.11 yields λ1 = lim
N→∞

1
2N

N−1∑
n=0

ln
[

A2+B2Y
′2

n

1+Y ′2n

]
=

1
2

lim
n→∞

ln
[
B2 + A2−B2

1+Y ′2n

]
with

∣∣∣Y ′
n

∣∣∣ =
∣∣∣∣
BY

′
n−1
A

∣∣∣∣ = |Y0|
∣∣B

A

∣∣n . Then we have :

lim
n→∞

∣∣∣Y ′
n

∣∣∣ =
{

+∞ for A < B
0 for A > B

Substitution of the limit in the equa-

tion for λ1 gives λ1 = ln[max (A, B)]. Also use λ1 + λ2 = det (J) = |AB|
to determine λ2.
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5.12

A.1.1 Logistic Map : J(X) = A(1− 2X)
A.1.2 Sine Map : J(X) = Aπ cos πX
A.1.3 Tent Map : J(X) = A sign(1/2−X)
A.1.4 Linear Congruential Generator : J(X) = A(mod C)
A.1.5 Gauss Map : J(X) = −1/X2(mod 1)

A.2.1 Hènon Map : J(X, Y ) =
( −2aX b

1 0

)

A.2.2 Lozi Map : J(X,Y ) =
( −a sign(X) b

1 0

)

A.2.3 Tinkerbell Map : J(X, Y ) =
(

2X + a −2Y + b
2Y + c 2X + d

)

A.2.4 Burgers Map : J(X, Y ) =
(

a −2Y
Y X + b

)

A.2.5 Kaplan-Yorke Map : J(X,Y ) =
(

a 0
−4π sin(4πX) b

)
(mod 1)

A.2.6 Dissipative Standard Map: J(X, Y ) =
(

1 1
k cosX(mod 2π) b

)

A.3.1 Chirikov Map : J(X, Y ) =
(

1 1
k cos(X) 1

)
(mod 2π)

A.3.2 Hènon Area-preserving Quadratic Map : J(X, Y ) =
(

cosα + 2X sin α − sin α
sinα− 2X cosα cos α

)

A.3.3 Arnold Cat Map: J(X, Y ) =
(

1 1
1 k

)
(mod 1)

A.3.4 Gingerbreadman Map : J(X, Y ) =
(

sign(X) −1
1 0

)

A.3.5 Stochastic Web Map : J(X, Y ) =
(

cos α− k sin α cos X − sin α
sin α + k cos α cos X cos α

)

A.3.6 Lorenz Simplest 3-D Map : J(x, y, z) =




Y X −1
1 0 0
0 1 0




5.13

Using eqn 5.20 we get λ = a (1− 2x) for the local Lyapunov exponent.
Since at x∗ = 1 we have f (x∗) = 0 the global Lyapunov exponent is
λ = −a.

5.14

5.15

Since J(x, y) =
(

0 1
−1− 2bxy b(1− x2)

)
, we have det(J) = 2bxy + 1.

For area expansion we require det(J) > 0, ie xy > −1/2b and for area
contraction we must have xy < −1/2b.
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5.16

INCOMPLETE
We have a = d = 0 , b = c = 1 . From eqn 5.23 we get λ1 + λ2 = 0 and

from eqn 5.21 λ1 = lim
T→∞

1
T

∫ T

0

2y′

1 + y′2
dt with

dy′

dt
= 1− y′2 for ∆t → 0

∫ 1
1− y2

dy = arctanh y

∫ 2 tanh t

1 + tanh2 t
dt = − 1

2 ln (−1 + tanh t)− 1
2 ln (1 + tanh t)+ 1

2 ln
(
1 + tanh2 t

)

lim
t→∞

(− 1
2 ln (−1 + tanh t)− 1

2 ln (1 + tanh t) + 1
2 ln

(
1 + tanh2 t

))
= ∞

5.17

5.18

Since
∂

∂x
[σ (y − x)]+

∂

∂y
[rx− y − xz]+

∂

∂z
[xy − bz] = −b− 1−σ < 0 for

all σ, b > 0 we have volume contraction with V (t) ∼ e−(b+1+σ)t .

5.19

A.4.1 Damped Driven Pendulum :

J(x, y, z) =




0 1 0
− cos x −b A cosΩz

0 0 0




A.4.2 Driven Van Der Pol Oscillator :

J(x, y, z) =




0 1 0
−1− 2bxy b(1− x2) A cosΩz

0 0 0




A.4.3 Ueda Attractor :

J(x, y, z) =




0 1 0
−3x2 −b A cosΩz

0 0 0




A.5.1 Lorenz Attractor :

J(x, y, z) =




−σ σ 0
r − z −1 −x

y x −b




A.5.2 Rössler Attractor :
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J(x, y, z) =




0 −1 −1
1 a 0
z 0 x− c




A.5.3 Diffusionless Lorenz Attractor :

J(x, y, z) =



−1 −1 0
−z 0 −x
y x 0




A.5.4 Chua’s circuit :

J(x, y, z) =




α(b− 1 + 1/2(a− b)(sign(x + 1)− sign(x− 1)) α 0
1 −1 1
0 −β 0




A.5.5 Moore-Spiegel Oscillator :

J(x, y, z) =




0 1 0
0 0 1

−T − 2Rxy −(T −R + Rx2) −1




A.5.6 Thomas’ Cyclically Symmetric Attractor :

J(x, y, z) =




−b cos y 0
0 −b cos z

cos x 0 −β




A.5.7 Simplest Quadratic Chaotic Flow :

J(x, y, z) =




0 1 0
0 0 1
−1 2y −a




A.5.8 Simplest Cubic Chaotic Flow :

J(x, y, z) =




0 1 0
0 0 1

y2 − 1 2yx −a




A.5.9 Simplest Piecewise Linear Chaotic Flow :

J(x, y, z) =




0 1 0
0 0 1

sign(x) −1 −a




A.6.1 Simplest Driven Chaotic Flow :
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J(x, y, z) =




0 1 0
3x2 0 cos Ωz
0 0 0




A.6.2 Nosé-Hoover Oscillator :

J(x, y, z) =




0 1 0
−1 z y
0 −2y 0




A.6.3 Labyrinth Chaos :

J(x, y, z) =




0 cos y 0
0 0 cos z

cos x 0 0




A.6.4 Hènon-Heilles System :

J(x, y, v, w) =




0 0 1 0
0 0 0 1

−1− 2y −2x 0 0
−2x 2y − 1 0 0




5.20

A.
∑

λ = lim
T→∞

1
T

∫ T

0
zdt = 〈z〉 Numerical calculation is needed.

B,C,E,I,L,M,R,S.
∑

λ = lim
T→∞

1
T

∫ T

0
−1dt = −1

D,O.
∑

λ = lim
T→∞

1
T

∫ T

0
xdt = 〈x〉 Numerical calculation is needed.

F,H,Q.
∑

λ = lim
T→∞

1
T

∫ T

0
(0.5− 1) dt = −0.5

G.
∑

λ = lim
T→∞

1
T

∫ T

0
(0.4− 1) dt = −0.6

J,N.
∑

λ = lim
T→∞

1
T

∫ T

0
−2dt = −2

K.
∑

λ = lim
T→∞

1
T

∫ T

0
(y − 1 + 0.3) dt = 〈y〉 − 0.7 Numerical calculation is

needed.
P.

∑
λ = lim

T→∞
1
T

∫ T

0
(2y) dt = 2 〈y〉Numerical calculation is needed.

5.21
Since one of the eigenvalues is positive we have a strange attractor of di-
mension greater than 2.

5.22

DKY = 3 +
1
27

(0.11 + 0.02) = 3. 004 8
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5.23

DKY = 4 +
1

0.6
(0.5 + 0.1 + 0− 0.3) = 4. 5

5.24

We first have to find the equation of a parabola y = ax2 + bx + c which
passes through the points (0, p1) , (1, p2) and (2, p3) . Solving the resulting
system of three equations in three unknowns we get

y =
(

1
2
p1 − p2 +

1
2
p3

)
x2 +

(
4p2 − 3

2
p3 − 5

2
p1

)
x + p3 − 3p2 + 3p1.

Hence we get :
A.5.1 p1 = p2 = 0.9056, p3 = −13.6667 and dimension ' 2.111
A.5.2 p1 = p2 = 0.0714, p3 = −5.3229 and dimension ' 2.025
A.5.3 p1 = p2 = 0.2101, p3 = −1 and dimension ' 2.273
A.5.4 p1 = p2 = 0.3271, p3 = −2.1926 and dimension ' 2.213
A.5.5 p1 = p2 = 0.1109, p3 = −1 and dimension ' 2.171
A.5.6 p1 = p2 = 0.0349, p3 = −0.54 and dimension ' 2.109
A.5.7 p1 = p2 = 0.0551, p3 = −2.017 and dimension ' 2.051
A.5.8 p1 = p2 = 0.0837, p3 = −2.028 and dimension ' 2.074
A.5.9 p1 = p2 = 0.0362, p3 = −0.6 and dimension ' 2.103
A.6.2 p1 = p2 = 0.0138, p3 = 0 and dimension = 3
A.6.3 p1 = p2 = 0.1402, p3 = 0 and dimension = 3 .

5.25

5.26

λ = ln(a(modc))
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6.1

In order to determine the inverse map interchange Xn and Xn+1, Yn and
Yn+1 to get Yn = bXn+1 and Xn = 1+Yn+1−aX2

n+1. Solving for Yn+1 and
Xn+1 gives the inverse map. Answer: Xn+1 = Yn/b , Yn+1 = Xn+aY 2

n /b−1.

6.2

The fixed points satisfy Xn+1 = Xn and Yn+1 = Yn . By eqn 6.2, this
means that Xn+1 = Xn = Yn+1 = Yn = X∗ = Y ∗. Eqn 6.1 becomes
(a4 + a5 + a6)X∗2 + (a2 + a3 − 1)X∗ + a1 = 0 . This equation has real
solutions when
∆ = (a2 + a3 − 1)2−4a1 (a4 + a5 + a6) ≥ 0. Under this condition the fixed
points are given by X∗ = Y ∗ =

(
1− a2 − a3 ±

√
∆

)
/ (2a4 + 2a5 + 2a6) .

6.3

The fixed points of the Hénon Map are given by the equation 1.4X2 +
0.7X − 1 = 0, whose solution is X = −1. 131 4 and X = 0. 631 35. Their
position relative to the attractor is shown in the figure below:

6.4

Interchange Xn and Xn+1, Yn and Yn+1 to get : Xn = a1 + a2Xn+1 +
a3Yn+1 + a4X

2
n+1 + a5Xn+1Yn+1 and Xn+1 = Yn . Solving for Yn+1 and

Xn+1 gives the inverse map. Answer: Xn+1 = Yn , Yn+1 = Xn−a1−a2Yn−a4Y 2
n

a3−a5Yn
.
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6.5
As in the previous problem use Xn+1 = Yn and Xn = a1 + a2Xn+1 +
a3Yn+1 + a4X

2
n+1 + a5Xn+1Yn+1 + a6Y

2
n+1. The second equation becomes

a6Y
2
n+1 + (a5Yn + a3)Yn+1 + Xn − a1 − a2Yn − a4Y

2
n = 0, whose solution

is:

Yn+1 =
1

2a6

[
−a5Yn − a3 ±

√
(a5Yn + a3)

2 − 4a6 (Xn − a1 − a2Yn − a4Y 2
n )

]

6.6
Antisymmetry about r = 0.5 can be verified if we notice that fi (0.5− r) =
−fi (0.5 + r) for i = 1, 2, 3. It is obvious that f1 is infinite for r = 0 and
r = 1 since tan (±π/2) = ±∞. Morever , one can verify that eqns 6.4 and
6.5 are also infinite using the Del’ Hôpital’s rule. All three functions have
half their values in the range −1 < f < 1 since we have f(0.5±0.25) = ±1.

6.7
6.8
Eqn 6.6 may be also written as a system of differential equations of the
form: ẋ = y , ẏ = z and ż = − 3

5z − y + |x| − 1. Equilibrium points satisfy
ẋ = ẏ = 0 . This happens only when y = z = 0 and x = ±1. The Jacobian
takes the form:

J(x, y, z) =




0 1 0
0 0 1

sign(x) −1 −a




When x = −1 the eigenvalues are −0.58846, 0.59423 ± 1.1603i and when
x = 1 the eigenvalues are 0.83555,−0.11778± 1.0876i.

6.9
The following calculations are valid as long as the a4 and a5 are posi-

tive numbers. Eqn 6.17 becomes
α

β2

dx′2

dt′2
+ a1

(
α2x2 − a4

) α

β

dx′

dt′
+ a5αx′ =

a2 sin (a3t
′) ⇒

dx′2

dt′2
+a1βα2

(
x2 − a4

α2

) dx′

dt′
+a5β

2x′ =
β2

α
a2 sin (a3βt′) . Choose β so that

a5β
2 = 1 ie β = ±

√
a−1
5 and α = ±√a4. In such a case the equation be-

comes
dx′2

dt′2
+ a′1

(
x2 − 1

) dx′

dt′
+ x′ = a′2 sin (a′3t

′) with a′1 = ±a1a4

√
a−1
5 ,

a′2 = ± a2

a5
√

a4
and a′3 = ±a3

√
a−1
5 .

6.10
In this problem we have to find the a ’s and b’s for which Xn = b1 tanh(a10+
a11Xn−1) + b2 tanh(a20 + a21Xn−1). The information we have in order to



xxix

solve the problem is that when Xn−1 is 0 or 1 then Xn = 0 and that
the maximum should be at Xn = 1 when Xn−1 = 1/2. Since we have six
unknowns and 4 equations we may have two free variables. The equations
are: b1 tanh(a10)+b2 tanh(a20) = b1 tanh(a10+a11)+b2 tanh(a20+a21) = 0
, b1a11 − b1a11 tanh2(a10 + a11/2) + b2a21 − b2a21 tanh2(a20 + a21/2) = 0
and b1 tanh(a10 + a11/2) + b2 tanh(a20 + a21/2) = 1

6.11

Cannot determine the LE accurately enough from the diagram in order to
compare them with those in the appendix.

6.12

Since we are interested only for the maximum, fit the parabola x = at2 +
bt+c through the points (−1, x1) , (0, x2) and (1, x3) . In this case we would
get a = 1

2 (x1 + x3) , b = 1
2 (x3 − x1) and c = x2. The maximum of the

parabola occurs at t = −b/ (2a) and equals to xmax = c− b2/4a.

6.13

The intersection with the Poincaré section occurs only when z1z2 < 0 .
Each point (x, y, z) on the line joining (x1, y1, z1) and (x2, y2, z2) is given
by x = x1 + λ (x2 − x1) , y = y1 + λ (y2 − y1) and z = z1 + λ (z2 − z1)
with 0 ≤ λ ≤ 1. For λ =

z1

z1 − z2
we have z = 0, ie an intersection

of the line with the plane z = 0. Therefore the coordinates of the point

(x, y) on the Poincaré section are given by x = x1 +
z1 (x2 − x1)

z1 − z2
and

y = y1 +
z1 (y2 − y1)

z1 − z2
.

6.14

6.15

6.16

6.17

6.18

The fixed points of the Lozi map satisfy X∗ = Y ∗ and 0.5X∗ = 1−1.7 |X∗|.
This gives either 0.5X∗ = 1 − 1.7X∗ ⇒ X∗ = Y ∗ = 0. 454 55 or 0.5X∗ =
1 + 1.7X∗ ⇒ X∗ = Y ∗ = −0. 833 33.

6.19

The fixed points satisfy X∗ = 10X∗2− 10Y ∗2− 6Y ∗ and X∗ =
Y ∗

4 (Y ∗ + 1)
.

Solving these equations we finally obtain the pairs (0, 0) and (1. 027 6,−1. 321 5) .
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6.20

The fixed points satisfy X = X2 − Y 2 − 1 and Y (1 − 2X) = 0 ⇒ (i)
Y = 0 and (ii) X = 1/2 . Then for Y = 0 (case (i))we get the equation
X2−X−1 = 0 whose solutions are X∗

1 = 1
2

√
5+ 1

2 and X∗
2 = 1

2− 1
2

√
5. The

Jacobian of the map has characteristic polynomial (2X − λ)2 + 4Y 2 = 0
and eigenvalues λ = 2X ± 2Y i. Therefore X∗

1 is unstable since λ > 0,
whereas X∗

2 is stable. For X = 1/2 we get non-real Y (case (ii)) . In order
to determine the periodic cycle consider the fixed points of the second
iterate map. For the Y component we get 4XY

(
X2 − Y 2 − 1

)
= Y ⇒

Y
[
4X

(
X2 − Y 2 − 1

)− 1
]

= 0. The equation 4X
(
X2 − Y 2 − 1

) − 1 = 0
together with the X component of the second iterate map do not have real
solutions. However when Y = 0, using

(
X2 − Y 2 − 1

)2 − 4X2Y 2 − 1 = X
we get X(X3 − 2X − 1) = 0. This gives X = 0 and X = −1. ,ie in this
case we have a 2-period cycle with oscillations between the points (0, 0)
and (−1, 0) .

6.21

By definition, the derivative of f with respect to Z̄ is
∂f

∂Z̄
=

1
2

(
∂

∂X
+ i

∂

∂Y

)
f =

1
2

(
∂F

∂X
− ∂G

∂Y

)
+

i

2

(
∂G

∂X
+

∂f

∂Y

)
. Since f is a function of Z only we have

∂f

∂Z̄
= 0. This condition requires

∂F

∂X
=

∂G

∂Y
and

∂G

∂X
= −∂F

∂Y
.

6.22

Hénon Map:
∂F

∂X
= −2aX 6= 0 =

∂G

∂Y
. Lozi map:

∂F

∂Y
= 0.5 6= 1 =

∂G

∂X
.

Julia set:
∂F

∂X
=

∂G

∂Y
= 2X and

∂G

∂X
= −∂F

∂Y
= 2Y.

6.23

The Cauchy-Riemann equations require
∂F

∂X
= a2+2a4X +a5Y = 0 =

∂G

∂Y
.

Hence we must have a2 = a4 = a5 = 0. Also
∂F

∂Y
= a3 + a5X + 2a6Y =

−1 = − ∂G

∂X
which gives a3 = −1, a5 = a6 = 0. Therefore in this case we

must have Xn+1 = a1−Yn and Yn+1 = Xn which is obviously a non-chaotic
system.

6.24

Let F = b1 + b2X + b3Y + b4X
2 + b5XY + b6Y

2 and G = c1 + c2X +

c3Y + c4X
2 + c5XY + c6Y

2. The Cauchy-Riemann equations require
∂F

∂X
=

b2 + 2b4X + b5Y ≡ c3 + c5X + 2c6Y =
∂G

∂Y
and

∂F

∂Y
= b3 + b5X + 2b6Y ≡
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−c2−2c4X−c5Y = − ∂G

∂X
. Equating the coefficients with the same powers

of X and Y we get : b2 = c3 = a2 , b4 = c5/2 = a4 , b5/2 = c6 = a5 ,
b3 = −c2 = a3 , b5/2 = −c4 = a5 and b6 = −c5/2 = −a4. If we also let
b1 = a1 and c1 = a6 we obtain eqns 6.18 and 6.19.
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7.1
This is done in the textbook on page 132. Eigenvalues?

7.2
Done in textbook (p.133). Eigenvalues?

7.3
When y = 1, ẏ = 0 for all values of the parameter a. Now, expand about
y = 1 by making a change of variable from y to v = y − 1. In this case
v is small and we have ẏ = v̇ = a ln(v + 1) + v ≈ a[v − 1

2v2 + ...] + v =
(a + 1)v − 1

2av2 + O(v3). Hence a transcritical bifurcation occurs when
a = −1. In order to write the last equation in normal form, let v = cξ
which transforms it to ξ̇ = (a + 1)ξ − 1

2caξ2 + O(v3). Letting c = 2/a and
µ = (a + 1) we finally obtain the normal form with
ξ = 1

2a (y − 1) .

7.4
The fixed points satisfy f = µx∗−x∗3 = 0. Solving for x∗ we obtain x∗ = 0
and x∗ = ±√µ. Then df

dx∗ = µ− 3x∗2 and for x∗ = 0 we get df
dx∗ = µ. Thus

for µ > 0, x∗ is unstable and for µ < 0 it is stable. However for the points
x∗ = ±√µ, which exist only for µ > 0 we get df

dx∗ = −2µ > 0 which are
stable.

7.5
The fixed points satisfy f = µx∗+x∗3 = 0. Solving for x∗ we obtain x∗ = 0
and x∗ = ±√−µ. Then df

dx∗ = µ + 3x∗2 and for x∗ = 0 we get df
dx∗ = µ.

Thus for µ > 0, x∗ is unstable and for µ < 0 it is stable. However for the
points x∗ = ±√−µ, which exist only for µ < 0 we get df

dx∗ = −2µ > 0
which are unstable.

7.6
For a > 1 the only equilibrium point we have is x∗ = 0 which is unstable
since df

dx∗ = a − cosx∗ > 0. For 0 < a < 1, the equilibrium points satisfy
sin x∗

x∗
= a. INCOMPLETE-NEEDS FIGURE.
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7.7

As shown in the text eqns 7.8 and 7.9 may be written in polar coordinates
as dr

dt = r
(
µ− r2

)
= f(r) and dθ

dt = 1. The equation f(r) = 0 is satisfied
for the points r∗ = ±√µ which exist for µ > 0 and for r∗ = 0. For r∗ = 0
we have df

dr = µ which means that it is stable for µ < 0 and unstable for
µ > 0. The points satisfying r∗ = ±√µ give df

dr = −µ which is always
stable (given that µ > 0 ).

7.8

Multiply eqn 7.8 by x and eqn 7.9 by y and add them together. Then
xdx

dt + y dy
dt = 1

2
dr2

dt = r dr
dt = r2

(
µ− r2

)
.

7.9

The equation d2x
dt2 + b

(
x2 − 1

)
dx
dt + x = a can be written as ẋ = y and

ẏ = a− b
(
x2 − 1

)
y − x. The Jacobian of this system is thus:

J(x, y) =
(

0 1
−2bxy − 1 −b(x2 − 1)

)

The fixed points satisfy ẋ = y = 0 and ẏ = 0 which gives x = a. In such a
case the characteristic polynomial is λ

[
λ + b

(
a2 − 1

)]
+ 1 = 0 which has

solutions λ =
−b(a2−1)±i

√
4−b2(a2−1)2

2 = A(a, b) ± iB(a, b). We have Hopf

bifurcations when b = 0 since A(a, 0) = 0, B(a, 0) 6= 0 and dA
db = − (a2−1)

2
which is greater than zero provided that a < 1. We may also have Hopf
bifurcations when a = ±1 since A(±1, 0) = 0, B(±1, b) 6= 0 and dA

da = ∓b
which is greater than zero when b is positive for a = −1 and when b is
negative for a = 1.

7.10

The equation dr
dt = r(µ + r2 − r4) = f(r) gives the fixed points r∗1 = 0 and

r∗2± = 1±√1+4µ
2 r∗22,3 = 1±√1+4µ

2 . To classify their stability compute df
dr =

µ+3r2−5r4 = −4µ−2r2 +5(µ+r2−r4). Obviously for r∗1
df
dr = µ which is

unstable for µ > 0 and stable for µ < 0. We have three cases : (i) µ < −1/4
in which the only fixed point is r∗1 which is stable. (ii) −1/4 < µ < 0 in
which we find r∗+ to be stable and r∗− to be unstable.(iii)µ > 0. The cycle
r∗− vanishes, r∗+ is still stable whereas r∗1 becomes unstable.HYSTERESIS

7.11

HARD

7.12

Hilborn pages 257 and 258. Too hard to be included. At least a number of
hints should be provided.
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7.13

Write the second iterate map keeping the terms up to 3rd order :
F (F (X)) = − (1 + µ)

[− (1 + µ)X + X3
]
+

[− (1 + µ)X + X3
]3 '

X +2Xµ+Xµ2−2X3−4X3µ−3X3µ2−X3µ3 = (1 + µ)2 X−X32+4µ+
3µ2+µ ⇒ F (F (X)) ' (1 + µ)2 X−(1 + µ)

(
2 + 2µ + µ2

)
X3, which is iden-

tical to eqn 7.19. Then taking F (F (±√µ)) = ± (1 + µ)2
√

µ∓µ (1 + µ)
(
2 + 2µ + µ2

)√
µ =

±
[√

µ− 3
(√

µ
)5 − 3

(√
µ
)7 − (√

µ
)9

]
. Since µ is small then we may ne-

glect the 5th, 7th and 9th powers of
√

µ to get F (F (±√µ)) ' ±√µ which
shows that ±√µ is approximately a fixed point.

7.14

Substitute X∗ = ln A in F (X) = AXe−X to get F (X∗) = X∗, thus showing
that X∗ is a fixed point. In order to show the existence of the flip bifurcation
make the change of variable Y = X− ln A and define G(Y ) = F (X)−X∗to
get G(Y ) = A (Y + ln A) e−(Y +ln A) − ln A = (Y + ln A) e−Y − ln A. The
map Yn+1 = G(Yn) has a fixed point at Y = 0. Expand G(Y ) about 0 up
to order 3 to get :
G(Y ) ' (Y + ln A)

(
1− Y + 1

2Y 2 − 1
6Y 3

)−ln A = (1− ln A)Y +
(

1
2 ln A− 1

)
Y 2+(

1
2 − 1

6 ln A
)
Y 3

INCOMPLETE
F (X) ' ln A+(1− ln A) (X − ln A)+1

2 (−2 + ln A) (X − ln A)2+ 1
6 (3− ln A) (X − ln A)3 =(

1 + ln A− 1
2 ln3 A + 1

2 ln2 A
)
X−(

1 + ln A− 1
2

(
ln2 A

))
X2+

(
1
2 − 1

6 ln A
)
X3+

1
6 ln4 A

7.15

7.16

7.17

7.18

7.19

7.20

7.21

7.22

7.23

7.24

7.25

7.26

7.27

7.28
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8.1
dH
dt =

∑
i

(
∂H
∂pi

dpi

dt + ∂H
∂qi

dqi

dt

)
=

∑
i

(
− ∂H

∂pi

∂H
∂qi

+ ∂H
∂qi

∂H
∂pi

)
= 0

8.2

H = p2

2mL2 + mgL (1− cosx) . In this case we have q ≡ x. Eqn 8.5 gives :
dp
dt = −∂H

∂θ = −mgL sin x = mL2 d2x

dt2
⇒ dv

dt
= −ω2 sin x with v =

dx

dt
and

ω =
√

g
L .

8.3

The Jacobian Matrix is given by: J(x, v) =
(

0 1
−ω2 cos x 0

)
which, eval-

uated at x = π , v = 0 gives J(π, 0) =
(

0 1
ω2 0

)
. The characteristic

polynomial is λ2 − ω2 = 0 which gives λ = ±ω =⇒ at x = π , v = 0 we
have a saddle point.

8.4

Start from E−mgL = mL2

2

(
dx
dt

)2−mgL cosx. Let x0 be the maximum value

of x, which satisfies cos x0 = −E−mgL
mgL . Hence L

2g

(
dx
dt

)2
= cos x − cosx0.

Solving for t : dt =
√

L
2g

dx√
cos x−cos x0

. Integrate from 0 to x0 to get 1/4

of the period T which can be written as T = 4
√

L
2g

∫ x0

0
dx√

cos x−cos x0
=

2
√

L
g

∫ x0

0
dx√

sin2 1
2 x−sin2 1

2 x0
. Make the substitution sin y = sin2 1

2x/ sin2 1
2x0

to convert it to T = 4
√

L
g K(sin 1

2x0) where K(s) =
∫ π/2

0
ds√

1−k2 sin2 s
is

the complete elliptic integral of the first kind. Since sin 1
2x0 =

√
1−cos x0

2 =√
E

2mgL , use these formulas to get TE/mgL :

T0.1 = 6.364
√

L
g , T1.0 = 7.416

√
L
g , T2.0 = ∞.
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8.5
In this case we have q1 ≡ x , q2 ≡ y , p1 ≡ v , p2 ≡ w . Using eqns

8.4 and 8.5 we get :
dp1

dt
=

dv

dt
= −∂H

∂q1
= −∂H

∂x
= −ω2 sinx + Ay ,

dp2

dt
=

dw

dt
= −∂H

∂q2
= −∂H

∂y
= −Ω2y + Ax ,

dq1

dt
=

dx

dt
=

∂H

∂p1
=

∂H

∂v
= v

and
dq2

dt
=

dy

dt
=

∂H

∂p2
=

∂H

∂w
= w .

8.6
We have q1 ≡ x , q2 ≡ y , p1 ≡ v , p2 ≡ w . Use eqns 8.4 and 8.5 to get :
dq1

dt
=

dx

dt
=

∂H

∂p1
=

∂H

∂v
= v ,

dq2

dt
=

dy

dt
=

∂H

∂p2
=

∂H

∂w
= w ,

dp1

dt
=

dv

dt
=

−∂H

∂q1
= −∂H

∂x
= −2xy−x and

dp2

dt
=

dw

dt
= −∂H

∂q2
= −∂H

∂y
= −y−x2+y2

.

8.7
LOOK UP FORMULA IN FORD’S REFERENCE

8.8

First note that x =
χ + ψ

2
, y =

χ− ψ

2
. Eqn 8.18 may be written as

2
dv

dt
= 2

d2x

dt2
=

d2χ

dt2
+

d2ψ

dt2
= −χ − ψ − χ2 + ψ2 and eqn 8.19 (with y2

replaced by −y2) as 2
dw

dt
= 2

d2y

dt2
=

d2χ

dt2
− d2ψ

dt2
= −χ+ψ−χ2−ψ2. Solve

for
d2χ

dt2
and

d2ψ

dt2
to obtain eqns 8.21 and 8.22.

SOLUTION??

8.9
Use eqn 5.24 with f = y , g = −x + yz and h = 1 − y2, from which it

follows that
1
V

dV

dt
= lim

T→∞
1
T

∫ T

0
zdt = 〈z〉

8.10
If we make the change of variables t → −t , z → −z and y → −y we still
get the same equations. Therefore the system is time reversible.

8.11
Since performing the change of variables t → −t , z → −z and x → −x
we still get the same equations, the system is time reversible. Also , using
eqn 5.24 together with f = −y, g = x + z and h = xz + 3y2 we get for the

time-reversed system :
1
V

dV

dt
= lim

T→∞
1
T

∫ 0

T
xdt = −〈x〉 .
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8.12

Use
dx

dt
= y ,

dy

dt
= −x+yz and

dz

dt
= 1−y2 .Since

dy

dt
=

d2x

dt2
= −x+

dx

dt
z ⇒

z =
(

d2x

dt2
+ x

)
/
dx

dt
. Taking the derivative of z with respect to t we

get
dz

dt
=

(
d3x

dt3
+

dx

dt

)
/
dx

dt
− d2x

dt2

(
d2x

dt2
+ x

)
/

(
dx

dt

)2

= 1 −
(

dx

dt

)2

.

Simplifying the last result yields eqn 8.31.

8.13

The differential equation for the simple pendulum can be written as
dx

dt
=

y = f (x, y) and
dy

dt
= k sinx = g (x, y) . For the case of the Leapfrog

method see solutions to problems 8.20 and 8.21. For the Runge-Kutta
method use k1xn = Yn , k1yn = k sin Xn , k2xn = Yn + 1

2k sin Xn and
k2yn = k sin(Xn + 1

2Yn). Then Xn+1 = Xn + Yn + 1
2k sin Xn and Yn+1 =

Yn + k sin(Xn + 1
2Yn). The Jacobian of this map has determinant det J =(

1 + 1
2k cos Xn

) (
1 + 1

2k cos(Xn + 1
2Yn)

)− k sin(Xn + 1
2Yn) 6= 1. Hence the

map in this case is not simplectic (area-preserving).

8.14

Use the Jacobian of the map is given at problem 5.12. whose determinant
is det J = cos2 α + sin2 α = 1.

8.15

The Hénon area-preserving quadratic map is not invertible.

8.16

The Jacobian is given by J(X,Y ) =
(

a2 + 2a4X + a5Y a3 + a5X + 2a6Y
1 0

)

The map is area preserving if | detJ | = | − a3 − a5X − 2a6Y | = 1 for all X
and Y . This is the case only if |a3| = 1 and a5 = a6 = 0.

8.17

The Jacobian is J(X, Y ) =
(

1 1
1 2

)
whose eigenvalues are λ± = 3±√5

2

with eigenvectors v± =
(

1
λ± − 1

)
=

(
1

1±√5
2

)
Since v+ · v− = 0 we

may conclude that the two manifolds are perpendicular to each other. The
unstable manifold corresponds to λ+. The tangent of the angle of v+ with
the x-axis is given by the ratio of the y over the x component of the vector
which is obviously equal to the golden mean.
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8.18

As indicated in the text on page 169 if we start from (−1, 3) → (−1,−1) →
(3,−1) → (5, 3) → (3, 5) → (−1, 3) which is a period 5 cycle.

8.19

Use the Jacobian of the map is given at problem 5.12. whose determinant
is det J = cos2 α + sin2 α = 1.

8.20

he differential equation for the simple pendulum d2x
dt2 + k sin x = 0 can be

transformed to a system of differential equations :dx
dt = y = f (x, y) and

dy
dt = k sin x = g (x, y). The Leapfrog method in the y-variable can be
written as Yn+1 = Yn + hg(Xn, Yn) and Xn+1 = Xn + hf(Xn, Yn+1). Since
we are dealing with angles we may take the equations modulo 2π and if we
use h = 1 we finally obtain eqns 8.40 and 8.41.

8.21

Use the Jacobian from the solution to problem 5.12 and calculate its de-
terminant which equals detJ = 1 + k cos X − k cosX = 1. Therefore the
map is area-preserving.

8.22

The fixed points satisfy Yn(mod2π) = 0 and k sin Xn(mod2π) = 0. The
fixed points are Y ∗ = 0 and X∗ = 0 or π. The Jacobian of the map is
given in the solution of problem 5.12 with characteristic polynomial λ2

− λ (2 + k cosX) + 1 = 0. When X∗ = 0 we get λ2 − (2 + k)λ + 1 = 0

whose solution is λ = 1 + 1
2k ± 1

2k
√(

4
k + 1

)
. So for all k we have a saddle

point.When X∗ = π we have the equation λ2 − (2− k)λ + 1 = 0 whose

solution is λ = 1 − 1
2k + 1

2k
√(

1− 4
k

)
. In this case we have an unstable

spiral point for 0 < k < 2, a stable spiral for 2 < k < 4 and a stable fixed
point for k > 4.

8.23

Start with X0 = 0 and Y0 = π. The first iteration will give Y1 = π(mod2π) =
π and X1 = π(mod2π) = π . The second iteration will give Y2 = π(mod2π) =
π and X2 = 2π(mod2π) = 0 which correspond to the initial point (X0, Y0)
.

8.24

One solution is (0, 2π
3 ) → ( 2π

3 , 2π
3 ) → ( 4π

3 , 2π
3 ) → (0, 2π

3 )
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8.25

The sum of the eigenvalues equals to the logarithm of the determinant
which in this case equals to log | detJ | = log |b(1 + k cosX) − bk cos X| =
log |b|.

8.26

In order to show that Q is conserved we have to show that A = (X2
n +

X2
n−1+X2

n−2−XnXn−1Xn−2)−(X2
n−1+X2

n−2+X2
n−3−Xn−1Xn−2Xn−3) =

0. A simplifies to A = X2
n − X2

n−3 − Xn−1Xn−2 (Xn −Xn−3) = X2
n −

(Xn−1Xn−2 −Xn)2−Xn−1Xn−2 (2Xn −Xn−1Xn−2) = 0. Hence Q is con-
served.
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10.1
?

10.2
Assume the polynomial to be of the form y = az2 + bz + c and passing
through the points (−1, Xn−2) , (0, Xn−1) and (1, Xn). Solving the resulting
system for a, b and c we get a = 1

2Xn + 1
2Xn−2−Xn−1 , b = 1

2Xn− 1
2Xn−2

and c = Xn−1. Using these coefficients set z equal to 2 to find Xn+1.

10.3
Assume the polynomial to be of the form y = az3 +bz2 +cz+d and passing
trough the points (−2, Xn−3), (−1, Xn−2) , (0, Xn−1) and (1, Xn).Solving
the resulting system for a, b, c and d we get a = − 1

2Xn−1 + 1
6Xn + 1

2Xn−2−
1
6Xn−3 , b = −Xn−1 + 1

2Xn + 1
2Xn−2 , c = 1

2Xn−1 + 1
3Xn−Xn−2 + 1

6Xn−3

and d = Xn−1. Using these coefficients set z equal to 2 to find Xn+1.

10.4
Assume the polynomial to be of the form y = az4 + bz3 + cz2 + dz + e and
passing through the points (−2, Xn−4) , (−1, Xn−3) , (0, Xn−2) , (1, Xn−1)
and (2, Xn). Solving the resulting system for a, b, c, d and e we get a =
1
4Xn−2 + 1

24Xn + 1
24Xn−4 − 1

6Xn−1 − 1
6Xn−3 , b = 1

12Xn − 1
12Xn−4 −

1
6Xn−1 + 1

6Xn−3 , c = − 5
4Xn−2 − 1

24Xn − 1
24Xn−4 + 2

3Xn−1 + 2
3Xn−3 ,

d = − 1
12Xn + 1

12Xn−4 + 2
3Xn−1 − 2

3Xn−3 and e = Xn−2. Using these
coefficients set z equal to 3 to find Xn+1.

10.5
Assume the polynomial to be of the form y = az5 + bz4 + cz3 + dz2 +
ez+f and passing through the points (−3, Xn−5), (−2, Xn−4), (−1, Xn−3),
(0, Xn−2), (1, Xn−1) and (2, Xn). Solving the resulting system for a, b, c, d, e
and f we get: a = 1

12Xn−2− 1
12Xn−3− 1

24Xn−1+ 1
120Xn− 1

120Xn−5+ 1
24Xn−4

,
b = 1

4Xn−2 + 1
24Xn + 1

24Xn−4 − 1
6Xn−1 − 1

6Xn−3 ,
c = − 5

12Xn−2 + 7
12Xn−3 + 1

24Xn−1 + 1
24Xn + 1

24Xn−5 − 7
24Xn−4 ,

d = − 5
4Xn−2 + 2

3Xn−3 + 2
3Xn−1 − 1

24Xn − 1
24Xn−4 ,

e = − 1
20Xn− 1

30Xn−5 + 1
4Xn−4−Xn−3 + 1

3Xn−2 + 1
2Xn−1 and f = Xn−2.

Using these coefficients set z equal to 3 to find Xn+1.
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10.6

The values to be predicted are:
X11 = sin 11 = −0. 99999, X12 = sin 12 = −0. 53657 and X13 = sin 13 = 0.
42017 Using eqn 10.1 we obtain:
X11 = −1. 8791, X12 = −3. 593 1 and X13 = −5. 686
Using eqn 10.2:
X11 = −1.5002, X12 = −2.4564 and X13 = −3.4126
Using eqn 10.3:
X11 = −1.3483, X12 = −1.47 and X13 = −0.3784
Using eqn 10.4:
X11 = −0. 51206, X12 = 2. 7113 and X13 = 12.166
Using eqn 10.5:
X11 = −0.23111, X12 = 4.397 and X13 = 18.035

10.7

Using the original map, the first 6 points are: X1 = 0.1, X2 = 0.36, X3 = 0
.9216, X4 = 0.28901, X5 = 0.821 93 and X6 = 0.58544. Knowing the
first 3 points we may use eqn 10.1 to get X4 = 1.4832, X5 = 2.0448
and X6 = 2.6064. Applying eqn 10.2 to the same set of 3 points we get
X4 = 1.7848, X5 = 2.9496 and X6 = 4.416.

10.8

Set j = m = 1 in eqns 10.7 and 10.8 and the result follows immediately.

10.9

a1 =
X4X3 + X3X2 + X2X1

X2
3 + X2

2 + X2
1

=
32 + 8 + 2
16 + 4 + 1

= 2. Hence Xn+1 = 2Xn.

10.10

a1 =
X2X1

X2
1

= 5. Hence Xn+1 = 5Xn so X3 = 25, X4 = 125 and X5 = 625

10.11
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12

12.1

D = log 3/ log 5 = 0.6826

12.2

D = log 3/ log 7 = 0.6826

12.3

D = log 4/ log 3 = 1.262

12.4

Answers given in section 11.4

12.5

Answer given in section 11.5

12.6

At the n-th stage of the construction we need a minimum of 2m boxes with
L = (1/3)m, so D0 = − − log 2m

log(1/3)m = log 2
log 3 = 0.6309

12.7

12.8

12.9

By the definition of C(r) we have C(0) = 0. As r → ∞ all Heaviside
functions evaluate to 1 since a circle with infinite radius contains all Xn’s.

In that case the double sum evaluates to
N∑

j=1

(N − j) = 1+2+ ...+N −1 =

N(N−1)
2 . This gives C(∞) = 1.

12.10

C(r) =
r∫
0

f(r)dr, where f(r) is the distribution of points on the real line.
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12.11

Referring to problem 12.10,let f(r) = 1. In this case the integral is per-

formed on a surface so C(r) =
2π∫
0

r∫
0

rdrdθ = πr2. Hence D2 = d log(πr2)
d log r =

d[2 log r+log π]
d log r = 2

12.12

12.13

12.14

12.15

The answers for D = 1, 2, ..., 10 are 252, 631, 1585, 3982, 10000, 25119, 63096, 1.58×
105, 3.98× 105, 106 respectively.

12.16

12.17

12.18

D =
log

494
298

log
5
3

= 0.989

12.19

D =
log

244036
88804

log
5
3

= 1.979

12.20

D =
log

5(a+b)−2
3(a+b)−2

log
5
3


